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A B S T R A C T   

Fire emergencies impose significant threats to building occupants. During evacuation, fire has significant im
pacts on evacuees' behaviors, by e.g., changing their route availability, disturbing their perception of the en
vironment due to reduced visibility, impairing their mobility that is usually associated with severe injuries, and 
causing significant mental stress that may lead to complicated and unpredictable navigation decisions. Despite 
the detrimental effects of fire on crowd evacuation, most existing building evacuation simulation models and 
tools do not account for the impacts of fire on the evacuation process; at most they rely on oversimplified 
assumptions and simulation settings. In this study, a new fire evacuation simulation model, named FREEgress 
(Fire Risk Emulated Environment for Egress), is developed to simulate the dynamic influences of heat, tem
perature, toxic gas and smoke particles on evacuees' mobility, navigation decision making and health conditions. 
FREEgress (1) introduces evacuee agents who are aware of and able to assess the fire hazards, and can make fire 
risk-informed navigation decisions; and (2) models the interactions between evacuee agents and the dynamic fire 
emergency environments and the consequent evacuation process. The verification of FREEgress is conducted by 
comparing its simulation results with two existing simulation tools, SAFEgress and FDS + Evac. In addition, a 
case study using FREEgress is carried out to simulate the evacuation in a museum for 30 different fire emergency 
scenarios. The simulation results are analyzed to assess the impacts of three important factors, namely initial fire 
location, evacuation delay time and evacuee behavior, on the evacuation process and evacuation outcomes. The 
case study demonstrated the potential value of FREEgress to support both the safety design of new buildings and 
maintenance and emergency management of constructed facilities.   

1. Introduction 

Fire emergencies impose critical threats to buildings and their oc
cupants. Public fire departments across the U.S. attended 499,000 fires 
in buildings in 2018, which caused 2910 deaths and 12,700 injuries [1]. 
During fire emergencies, hazardous fire conditions and unsuccessful 
evacuation attempts can expose occupants to significant risks [2,3]. 
Evacuation simulation is an effective approach to reproduce occupants' 
evacuation behavior during building fire emergencies, which is funda
mentally important for advancing the understanding about occupants' 
navigation decision-making during evacuation, and for developing ap
propriate measures to facilitate the evacuation process and hence re
duce the risks occupants may be faced with [4]. 

There is an increasing volume of literature in recent decades that 
has focused on developing models for simulating crowd evacuation 

during building fire emergencies. These models can be broadly cate
gorized into three groups based on simulation techniques, namely 
particle system models, cellular automata models and agent-based 
models [5]. A typical example of particle system models is the social 
force model proposed by Helbing [6]. Although particle system-based 
simulations can successfully simulate typical phenomena (such as 
panic) and observe self-organization behaviors (e.g., faster is slower 
and mass behavior) in pedestrian dynamics, they cannot reproduce 
subtleties of individual behaviors (e.g., walking in pairs) [7]. Moreover, 
they neglect to consider occupants' decision making and oversimplify 
their navigation process [8]. Cellular automata models are widely 
adopted by many commercial simulation tools, such as Building 
EXODUS [9], Simulex [10], and CAFÉ [11]. These models reproduce 
many collective behaviors (such as clogging and arching) and are sui
table for large-scale computer simulations, but they have limited 
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realism in representing occupants' decision making and dynamic en
vironment change [7]. Nor can these models represent the impact of 
pedestrians' injuries or that of high-density crowds [8]. Agent-based 
models consider each evacuee as an autonomous agent, who can per
ceive surrounding environments, exchange information with other 
agents, make informed evacuation decisions, and implement evacua
tion strategies accordingly. Examples of agent-based models for crowd 
evacuation include Vicrowd [12], HiDAC [13], MASSEgress [14], 
SAFEgress [15] and Pathfinder [16]. These models can not only simu
late the intelligent and heterogeneous agents and environments but also 
capture emergent phenomena (such as crowd congestion) and complex 
human behaviors (such as competitive behavior, queuing behavior and 
herding behavior) [4]. Therefore, these models have been popularized 
in the latest literature. While various existing agent-based models have 
incorporated many principles of human behavior and significantly ad
vanced the efficacy of building fire evacuation simulation, most existing 
models have thus far ignored the impacts of fire hazards on human 
behavior and consequently on the outcomes of evacuation. Fire has 
significant impact on evacuees' egress behaviors in several aspects 
[3,17]. First, evacuees, by instinct, would choose a route that can avoid 
high temperature and heat; second, heavy smoke can reduce the visi
bility and therefore cause occupants to slow down, while the toxic gases 
can impair occupants' mobility and even lead to severe injuries and 
failure of evacuation. In extreme cases, fire hazards can cause sig
nificant mental stress that may lead evacuees to make complicated and 
unpredictable navigation decisions. 

Despite the significant effects of fire in crowd evacuation, most 
existing building simulation models and tools do not account for these 
impacts or rely on oversimplified assumptions and simulation settings. 
The lack of realistic simulation of fire impacts is especially critical. 
Modeling fire impacts is a challenging issue considering the fact that 
fire and smoke develops and spreads, and their influence on occupants 
is highly dynamic and spatiotemporal-specific. Although several com
mercial or academic simulation tools have attempted to incorporate the 
impacts of fire in evacuation simulation, including Building Exodus [9], 
FDS + Evac [18], FireGo [19] and AIEval [20], fire impacts are highly 
oversimplified and usually underestimated in these tools, owing to the 
particle system or cellular automata-based structure of these tools [21] 
or their simplified qualitative rule-based reasoning mechanism [7]. 
Failure to appropriately account for the fire impacts has largely pre
vented fine-grained modeling of evacuees' navigation decision-making 
and behaviors, leading to inaccurate prediction of evacuation process 
and outcomes. 

Motivated by this gap, this study aims to develop a new simulation 
model, FREEgress (Fire Risk Emulated Environment for Egress), to 
incorporate the various impacts of fire on evacuees into the evacuation 
simulation, by (1) introducing evacuee agents, who are aware of and 
able to assess the fire hazards, and can make fire risk-informed navi
gation decisions; (2) modeling interactions between evacuee agents and 
the dynamic fire emergency environments and the consequent eva
cuation process. FREEgress inherits major features of SAFEgress [15], 
its earlier version which is proven effective in simulating both human 
and social behaviors in the evacuation process [21]. By appropriately 
accounting for fire impacts in the agent-based modeling of fire eva
cuation, FREEgress aims to achieve more realistic and fine-grained si
mulation of evacuees' navigation decision-making and navigation be
haviors by incorporating dynamic fire impacts, and ultimately achieve 
more accurate simulation and prediction of crowd evacuation processes 
and outcomes for various building fire emergency scenarios. 

2. Fire impact on evacuees 

Fire hazards (e.g., heat and high temperature, toxic gas and smoke) 
impact evacuees physiologically and psychologically during fire emer
gency evacuation [17]. Specifically, these fire hazards influence evac
uee's motion speed, health, decision making and navigation, which are 

important for determining the outcomes of their evacuation tasks to a 
large extent. Based on a thorough review of relevant literature, the fire 
impacts are summarized as follows. 

Heat and high temperatures during fire emergencies can sig
nificantly diminish evacuees' health conditions. The tenability limit for 
the skin is 2.5 kw/m2 [17]. At this limit, people can tolerate up to 
5 min, while above this limit people may be burned in just a few sec
onds. Purser and McAllister [17] also pointed out that the high tem
perature poses a major threat to evacuees in fire emergencies, which 
can result in heat stroke, skin burns and respiratory tract burns. Ex
posure to temperatures above 120 °C for minutes may quickly im
mobilize an individual and eventually lead to fatality. Exposure to en
vironments with slightly lower temperatures but high humidity may 
also cause heat stroke. Simms and Hinkley [22] investigated the tol
erance time of people under different temperatures. They pointed out 
that under dry air, when the temperature reached 110 °C, people's 
tolerance time was 25 min, after which people would be faced with 
fatal risks. This tolerance time would quickly drop to 3 min when the 
temperature was increased to 180 °C. 

Toxic gases produced by fire can also greatly harm evacuees' health 
conditions. Fire combustion generates mainly six toxic gases, including 
carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide 
(HCN), hydrogen chloride (HCl), hydrogen bromide (HBr) and nitrogen 
dioxide (NO2), among which CO is the most deathful [23]. When CO is 
absorbed in the human body, it combines with hemoglobin. As a result, 
red blood cells lose their ability to transport oxygen, which leads to 
hypoxia and death. Several models have been developed in the litera
ture to assess the impact of toxic gas hazards on humans. The N-gas 
model [23], developed by the National Institute of Standards and 
Technology (NIST), assumes that the toxicity is mainly caused by the 
superposition of toxic gases from the combustion products. The model 
considers the effects of the above six toxic gases. By extending the N-gas 
model, Babrauskas et al. [24] developed the FED (fraction effective 
dose) model, which could account for the interactions between CO2 and 
CO/O2 to better describe the toxic effect. Moreover, Stuhmiller et al. 
[25] proposed a quantitative mathematical model, the Toxic Gas As
sessment Software (TGAS), to estimate the probability of human body 
disability based on the concentration of toxic gases in the alveoli and 
the absorption coefficient. 

The smoke that spreads at fire emergency scenes can significantly 
slow down their motion speed [26]. The extinction coefficient is often 
used to reflect the smoke density [27]. Through a large number of ex
periments, Jin and Yamada [27] pointed out that the motion speed of 
evacuees would be reduced as the extinction coefficient increased, and 
it would be reduced rapidly when the extinction coefficient increased to 
0.5/m. Under heavy smoke, as Jenson [28] reported, people's motion 
speed is limited to 0.2 m/s–0.5 m/s. Smoke also lowers evacuees' vis
ibility to decrease their motion speed. Smoke can also significantly 
impair the visual range of evacuees and increase the difficulty of eva
cuation. Experiments have shown that under low visibility conditions in 
indoor environments, people would tend to walk along walls, and their 
motion speed would be lower than that under normal conditions [17]. 
Jin and Yamada [27] pointed out that during a building fire evacuation, 
for people who were familiar with the indoor space, a minimum visual 
range of 4 m was required for them to evacuate successfully, whereas 
for those who were not familiar with the space, a minimum visual range 
of 13 m was needed. Yet, Rasbash [29] contended that a visual range of 
10 m should be guaranteed, regardless of the familiarity with the sur
roundings. 

Apart from that adverse impacts on evacuees' health conditions, fire 
hazards can also impact evacuees' decision making and navigation 
during fire emergencies [14]. For instance, evacuees' perceptions about 
surrounding environments and neighboring evacuees may be hindered 
when their visibility is narrowed by smoke [30], which would cause 
difficulties for them to find adjacent navigation points. Evacuees may 
also become stressful when facing fire hazards, which would decrease 
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their judgment ability. As a result, evacuees may tend to follow the 
crowd flow, which sometimes causes unbalanced use of exits and in
creases the total evacuation time [31], or even results in crowding and 
trampling. In addition, for fire emergency scenes, Purser and McAllister 
[17] defined safe areas as places where the temperature is below 
120 °C, the heat flux is less than 2.5 kw/m2 and the oxygen con
centration is higher than 12%. As fire hazards develop and spread 
during fire emergencies, the boundaries of safe areas change, which 
dynamically impact evacuees' navigation strategies and may force them 
to find alternative routes as they try to stay within the safe areas. 

3. FREEgress 

3.1. System architecture 

FREEgress is a crowd evacuation simulation model, which extends 
its earlier version, SAFEgress [15], by incorporating dynamic impacts of 
fire hazards on evacuees to achieve more realistic and accurate simu
lation of evacuees' behaviors and indoor emergency evacuation process.  
Fig. 1 illustrates the overall system architecture of FREEgress. Three key 
modules are Global Database, Crowd Simulation Engine and Agent 
Behavior Models Database. This model also includes a few supporting 
sub-modules, including Situation Data Input Engine, Geometry Engine, 
Event Recorder, Population Generator and Visualizer. These modules 
are mostly inherited from SAFEgress but a number of them (as illu
strated with dashed boxes in Fig. 1) have modified functions. In addi
tion, FREEgress can interact with Pyrosim [32], which is a graphical 
user interface for fire hazards modeling software Fire Dynamics Simu
lator (FDS) [33] and visualization software Smokeview [33], to enable 
exchanges of fire data and trajectory data. This new function is illu
strated with dashed arrows in Fig. 1. All FREEgress modules and their 
functions are further explained in the remainder of this section. 

In addition, an overall phase list of FREEgress is shown in Fig. 2, 
which illustrates how FREEgress works. First, for any given building 
under investigation, its floor plan is imported into the Geometry Engine 
to generate a virtual environment. Second, fire simulation settings, such 
as heat release rate (HRR), fire growth rate and fire location, are de
fined in Pyrosim [32], and fire data generated by the FDS model [33] 

are imported into the Situation Data Input Engine. Third, a 2-D grid of 
uniformly sized square cells is cast over the virtual environment and a 
navigation map is generated by the Geometry Engine based on the grid 
cells. Next, different types of cue objects such as an alarm and fire or 
strobe light, and their locations are set by users using the Situation Data 
Input Engine. Meanwhile, the number and location of agents, and their 
behavior type and delay time are also defined by users using the Po
pulation Generator and the Agent Behavior Models Database, respec
tively. The above settings are all stored in Global Database. Then, 
evacuation simulations are carried out by the Crowd Simulation Engine, 
which generates a number of simulation outputs, including agents' 
evacuation time, speed, trajectory, health conditions, fatalities and 
route availability. These outputs are stored in the Event Recorder and 
illustrated to users by the Visualizer. Finally, fire data and agents' 
evacuation trajectories are imported into Pyrosim, and agents' eva
cuation processes are synchronously visualized and animated using 
Smokeview [33]. 

3.2. Representation of the spatial environment 

Building layout and building features (such as doors) can sig
nificantly influence occupants' evacuation route choices during fire 
emergencies [21]. In FREEgress, a spatial model of the indoor en
vironment set by users is used to represent the building layout, which is 
stored in the Geometry Engine. The building layout is a 2D projection of 
building obstacles (such as walls and furniture) on the horizontal floor. 
The agents equipped with simulated vision capability can detect the 
obstacles and avoid colliding with them. However, the agents cannot 
see or pass through the obstacles. 

In fire emergencies, occupants often use building features (such as 
exits, doors and exit signs) to guide their evacuation. These features are 
represented as navigation objects in FREEgress. Each object is defined 
by its type, location, orientation, as well as directional information if 
applicable (e.g. exit sign). These characteristics can be defined by users. 
In FREEgress, three types of navigation objects are defined, namely exit, 
door and exit sign. Each exit represents an outlet of the building. When 
an agent arrives at an exit, its evacuation task is considered completed. 
The agent can move from one room to another by crossing a door. An 

Fig. 1. Architecture of FREEgress.  
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exit sign is used to indicate evacuation routes or directions such as 
“forward” and “turn left”. Exits, doors and exit signs, which do not 
represent all possible building safety features, are the most significant 
features pertaining to egress design and have a major impact on peo
ple's evacuation decisions [21]. In addition, other types of navigation 
objects can also be defined if needed. 

3.3. Simulation of fire hazards and emergency cues 

Fire hazards, including heat, high temperature, smoke particles and 
various toxic gases, can be produced during fire incidents, which would 
greatly diminish evacuees' motion speed and health conditions [17,18]. 
To assess the development of these fire hazards and account for their 
impacts, the following five types of spatiotemporal data are collected 
from fire simulations in Pyrosim: temperature, heat flux, fractional ef
fective dose (FED), fractional irritant concentration (FIC) and extinction 
coefficient. These data correspond to different impacts on evacuees, 
which are further discussed in Section 3.4. In FREEgress, the floor plan 
is discretized into a grid of uniform cells of 1.524 m by 1.524 m 
(equivalent to 25 sqft). The fire status of each cell is represented by the 
five types of fire data in the center point of each cell. To measure and 
record the values of the above five parameters in the fire simulation 
process in Pyrosim, a thermocouple and four gas-phase devices are 
placed at the center of each cell to obtain the five types of data, re
spectively. These data are measured at height Z = 1.5 m, which is the 
approximate height of people's mouth and nose. The recording interval 
of these devices was set to be 1 s over the entire fire simulation process 
in Pyrosim. The data generated by Pyrosim are converted using Matlab 
to a format that can be read and parsed automatically by FREEgress. In 
FREEgress, the fire data of each cell is updated every second, consistent 
with the time granularity of the fire data. The import of fire data is 
implemented using the Situation Data Input Engine. 

During fire emergencies, occupants can get access to the cues that 
trigger the evacuation process [21]. In FREEgress, audio cue objects 
such as an announcement and an alarm and visual cue objects such as 
fire or strobe light are modeled. These objects are defined by their type, 
source location, effective range, active period during the simulation and 
reaction time. The reaction time refers to the required time lag from 

when an occupant perceives the cue to when the occupant takes eva
cuation actions, assuming that the occupant has no prior experience of 
the cue. The triggering condition of the audio cue is that an agent is 
within the effective range of the cue. The triggering conditions of the 
visual cue are that an agent is within the effective range of the cue and 
the line of sight between the agent and the location of the cue object is 
not blocked by any obstacles. 

3.4. Agent representation of evacuees 

Occupants that evacuate from fire emergency scenes are modeled as 
agents in FREEgress. Each agent is configured based on a set of static 
and dynamic attributes, which can be categorized into the individual 
and group levels, as summarized in Table 1. 

Note that each attribute has its own range, and users can define 
different types of agents by assigning different values to the attributes 
[44]. For instance, the value of cue awareness factor ranges from 0.01 
(indicating highest cue awareness hence the shortest delay time) to 2.0 
(indicating lowest cue awareness hence the longest delay time). For 
brevity, details of all attributes can be found in [44] and are not further 
elaborated in this paper. 

At the individual level, an agent is defined by its physical profile, 
which includes attributes such as age, gender, body size and personal 
space [34]. The familiarity with the building environment is defined by 
a set of known exits [35–38]. The agent's emergency experience is de
termined by cue awareness factors [35–38]. At the group level, a social 
group is defined by group compliance [39,40]. The agent adopts group 
behavior only when the group compliance is high. The group influence 
determines the agent's influence on other members in the same group 
[39,40]. The group separation tolerance, which is used to detect whe
ther an agent is too far from the group, describes the agent's allowable 
maximum distance away from other visible group members [39,40]. 

Occupants' wayfinding behaviors during fire emergencies are the 
result of complex cognitive processes [45]. Based on the investigation 
of human wayfinding behaviors during fire emergencies in a number of 
prior studies [37,44–46], the agent behavior in FREEgress is modeled 
with a four-stage behavior cycle, namely perception - interpretation - 
decision-making - execution, that supports structured representation 

Fig. 2. Phase list of FREEgress.  
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and computation of the agent behavior. As illustrated in Fig. 3, an 
agent's dynamic attributes are updated during this recursive process. At 
the perception stage, the agent perceives five types of information that 
are found to be important for their wayfinding decisions in prior re
search: (1) visible navigation objects such as exits, doors and exit signs 
[41]; (2) visible group members [49,50]; (3) neighboring agents 
[49,50]; (4) emergency cues such as alarm and strobe lights [42,43]; 
and (5) fire hazards such as heat, temperature, smoke and toxic gas 
[17]. At the interpretation stage, based on the perceived danger, cue 
objects and urges of its social group and neighboring groups, the agent 
updates its visibility, motion speed, health conditions and internal urge. 
The urge level, which has a value ranging from 0 (low urge) to 1 (high 
urge), is a measurement of the agent's urgency to undertake or modify 
the evacuation actions [44]. The visibility, motion speed and health 
conditions determine the physiological status of the agent [17]. At the 
decision-making stage, the agent first checks its individual behavior 
attribute, and determines whether to adopt perception-based behavior, 
which means the agent perceives the surrounding environments only 
based on visible navigation objects, or knowledge-based behavior, 
which means the agent is familiar with the environment such as the 
location of exits [45,46]. Then, the agent reasons through the group 
behavior. If its group compliance attribute is configured to have a high 
value, its behavior type changes to the following-leader behavior, 
which means the agent follows a leader in the group to evacuate, re
gardless of its individual behavior. The above behaviors are pre-defined 
and stored in the Agent Behavior Models Database. At the end of the 
decision-making stage, the agent updates its selected behavior, navi
gation goal and navigation point. The navigation goal is the final target 
of the evacuation, such as an exit, and might not be in the agent's line of 

sight [47,48]. The navigation point is the target position of the intended 
next movement and is visible to the agent [47,48]. The navigation point 
determines the agent's intended motion direction. At the execution 
stage, the agent conducts locomotion to update its spatial position. As 
the agent moves, it also updates its spatial knowledge, which keeps 
track of the areas previously visited. 

3.5. Modeling of fire impacts on evacuees' physiology 

Fire hazards can impact evacuees physiologically, by lowering their 
motion speed and impairing their health conditions. These impacts are 
quantitatively assessed and modeled in FREEgress using the Crowd 
Simulation Engine, as explained below. 

3.5.1. Fire impacts on motion speed 
Fire hazards, particularly the smoke, can significantly slow down 

occupants' motion speed and hinder their evacuation [17]. The ex
tinction coefficient is usually used to measure the smoke density [27]. 
In the SFPE Handbook of Fire Protection Engineering, Purser and 
McAllister [17] proposed that irritating smoke and non-irritating smoke 
have different impacts on occupants' speed, and an agent's maximum 
motion speed during normal conditions equals 1.2 m/s. For non-irri
tating smoke conditions, the relationship between the agent's motion 
speed (V, m/s) during fire emergencies and the extinction coefficient 
(K, 1/m) follows Eq. (1) [17]: 

= +KV 0.1733 ln 0.6933 (1)  

For irritating smoke conditions, the relationship between the agent's 
motion speed (V, m/s) during fire emergencies and the extinction 

Table 1 
Attributes of evacuee agents in FREEgress.     

Attributes Individual level Group level  

Static attributes  ▪ Physical profile [34]  
▪ Known exits [35–38]  
▪ Cue awareness factors [35–38]  

▪ Group compliance [39,40]  
▪ Group influence [39,40]  
▪ Group separation tolerance [39,40] 

Dynamic attributes  ▪ Visible navigation objects [41]  
▪ Emergency cues [42,43]  
▪ Fire hazards perception [17]  
▪ Urge level [44]  
▪ Physiological profile [17]  
▪ Selected behavior [44–46]  
▪ Navigation goal [47,48]  
▪ Navigation point [47,48]  
▪ Spatial position [47,48]  
▪ Spatial knowledge [47,48]  

▪ Visible group members [49,50]  
▪ Neighboring agents [49,50] 

Fig. 3. Decision-making process of agents during fire emergencies.  
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coefficient (K, 1/m) follows Eq. (2) [17]: 

= + +eV ( 0.2FIC 0.2)(1000FIC/160)2
(2) 

where FIC is a relatively effective concentration for irritating gases, the 
value of which can be acquired by setting a gas-phase device at the 
location of interest in Pyrosim. 

Considering the different motion speed of the agents during normal 
conditions for different ages and genders, their motion speed during 
normal conditions were normalized using a normalization coefficient. 
The normalization coefficient of smoke obscuration effect on moving 
speed (fsmoke) and the normalization coefficient of smoke irritancy effect 
on the moving speed (firr) can be obtained as Eqs. (3) and (4) [17], 
respectively: 

= +f K0.1733 ln 0.6933
1.2smoke (3)  

= + +f e ( 0.2FIC 0.2)
1.2irr

(1000FIC/160)2

(4) 

where fsmoke=1 for irritating smoke conditions, and firr=1 for non-ir
ritating smoke conditions. 

Combining the influence of smoke obscuration and irritancy, the 
motion speed of an agent during fire emergencies can be calculated 
based on Eq. (5): 

= ×f f VV (1 (1 ) (1 ))smoke irr nor (5) 

where Vnor is the motion speed of an agent during normal conditions. 

3.5.2. Fire impacts on health 
The adverse impacts of fire hazards on evacuees' health are mainly 

caused by heat and toxic gases [17]. In FREEgress, a health value is 
assigned to each agent to assess its health condition. The initial health 
value is set at 1, which will be reduced when the agent is imposed to 
fire hazards. If the health value is reduced to 0, it indicates that the 
agent has lost its escape capability and a fatality occurs. 

Heat-related risks to human health are mostly related to two forms 
of heat transfer, including heat radiation and heat convection [17]. 
Accordingly, the adverse impacts of fire hazards on the health value of 
the agents are modeled in FREEgress as follows. 

For heat radiation, the tenability limit for the skin is approximately 
2.5kw/m2, below which people can tolerate for several minutes, while 
at this limit and above skin can be burned in just a few seconds [17]. In 
general, the relationship between the time to escape incapacitation 
(trad, min) and the heat flux (q, kw/m2) follows Eq. (6) [17]: 

=
<

t
r q q kw m

q kw m
/ , 2.5 /

0, 2.5 /rad
1.33 2

2 (6) 

where r = 10(kw · m−2)1.33min. For heat convection, the time to in
capacitation of agents is determined by the environment temperature. 
Exposure to temperatures above 120 °C for 5 min is a significant cause 
of burn injury and can eventually lead to fatality, while a victim ex
posed to temperature less than 120 °C is unlikely to get burned but may 
also suffer heatstroke after a long exposure (e.g. exceeding 15 min) 
[17]. The relationship between the time to escape incapacitation 
(tconv,min) and the environment temperature (T, °C) follows Eq. (7) 
[17]: 

= ×t T5 10conv
7 3.4 (7)  

Considering the impacts of both heat radiation and heat convection, 
the health damage caused by heat (FED_Heat(∆t)) can be calculated 
based on Eq. (8) [17]: 

= +t tFED_Heat( ) 1
t

1
tt

t

rad conv1

2

(8) 

where ∆t = t2 − t1. Meanwhile, the FED model [24] is the most 

commonly used model to evaluate the escape incapacitation and leth
ality for humans infected by toxic gas. Agents' health condition can be 
reflected by FED value. When the cumulative value of FED exceeds 1, it 
indicates the agent loses its escape capacity. The relationship between 
FED value of an agent and the time that the agent has been exposed to 
fire hazards follows Eq. (9): 

= t tFED( t) FED( ) FED( )2 1 (9) 

where ∆t = t2 − t1, FED(∆t) is the health damage caused by toxic gas 
during ∆t time, FED(t1) is the FED value at time t1, and FED(t2) is the 
FED value at time t2. 

Combining the effect of heat and toxic gases, the health condition of 
an agent at time t (Health(t)) in FREEgress can be calculated based on 
Eq. (10): 

=Health(t) 1 FED(t) FED_heat(t) (10)  

In Pyrosim, the FED value can be acquired by setting a gas-phase 
device at the location of interest. In this study, the initial FED value 
(FED(0)) is 0. Then the FED value at time t is FED(t) and the initial 
health of an agent is defined as 1 at t = 0 s. 

3.6. Modeling of fire impacts on evacuees' navigation strategy 

The navigation strategies of agents in FREEgress were inherited 
from SAFEgress, which incorporated relevant studies in the fields of 
environmental psychology [47] and robotic navigation [48], with ad
ditional consideration of the impact of fire hazard. In SAFEgress, agents 
always choose to move to a direction that allows them to maximize new 
spatial information about the environment in the next position. To 
model this strategy, the concepts of navigation point (denoted as “NP”) 
and navigation map are introduced (Fig. 4). The NPs, which are points 
with locally maximum visibility, represent building safety features 
(such as exits, doors and exit signs) that have major impacts on people's 
evacuation decisions [44,48]. The NPs are computed as follows: a 
continuous space is divided into 2D grid cells. The navigation objects 
(e.g., exits, doors and exit signs) are set as initial NPs (Fig. 3(a)). Then, 
the visible area of each cell's center is computed as the cell's visibility. If 
the visible area of a cell is larger than that of all adjacent cells, then the 
center of the cell is marked as a NP (Fig. 3(b)). The navigation map is 
constructed by adding edges to link all pairs of NPs that are visible to 
each other (Fig. 3(c)). However, when fire hazards exist between a pair 
of cells, where the heat flux is more than 2.5 kw/m2 or the temperature 
exceeds 120 ℃ [17], then the edge between these two NPs is removed 
(Fig. 3(d)), which reflects that fire hazards can limit the agents' route 
options at every move, and reshape their navigation strategy. It is noted 
that the navigation decision of the agents is mainly determined by the 
behavior type of the agent (such as perception based vs knowledge 
based vs follow familiarity). Even with the same NPs and navigation 
map, the navigation route of the agents can be entirely different if the 
agents assume different evacuation behaviors. 

When multiple NPs are visible from the current position, agents 
with different types of behavior have different navigation strategies. 
Agents with knowledge-based behavior choose the NP that is closer to 
known exits in their visible area. Agents with perception-based beha
vior choose the NP according to environmental cues, while avoiding 
visiting the NPs that have been visited before. Agents adopting fol
lowing-leader behavior choose a leader agent as a NP, and the leader 
agent adopts knowledge-based behavior. The leader agent will move 
towards the group member agents, who could be family members or 
close friends, when their distance exceeds a certain tolerance [21,39]. 
Lastly, after the agents choose a NP, they move to the NP, and mem
orize the areas they have visited. 

3.7. Synchronous visualization of fire spread and evacuation 

FREEgress can visualize the spreading of fire hazards and the 
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evacuation of agents synchronously by linking to Smokeview. 
Specifically, FREEgress records the trajectory of every agent and out
puts a text file (txt), which contains agent ID and timestamped 2D co
ordinates. A Matlab program is developed to convert the trajectory file 
into a specified format file (txt), which contains agent ID, the time
stamp, number of agents and 2D coordinates. A Fortran program is 
developed to read and extract these data and generate an unformatted 
file (*.prt5), which can be loaded to the Smokeview to visualize the 
spreading of fire hazards (e.g. fire and heat) and the movement of the 
agents synchronously, as illustrated in Figs. 5 (showing spreading of 

smoke) and 6 (showing temperature change). 

4. Model verification methodology 

4.1. Verification rules 

The general rule adopted for verifying the proposed FREEgress 
model is that, when FREEgress and existing verified tools are used to 
simulate the same set of fire emergency scenarios, FREEgress can be 
considered as verified 1) if no significant differences exist between their 

Fig. 4. Procedure for generating a navigation map within the dotted box area.  

Fig. 5. Synchronous visualization of spreading of smoke and movement of agents.  
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respective evacuation outcomes; or 2) if significant differences in their 
respective evacuation outcomes are observed, and the differences are 
reasonable owing to the inherent differences between FREEgress and 
other tools. 

Specifically, to verify the efficacy of FREEgress, the following two 
hypotheses were made and tested in this study. Hypothesis I: Since 
FREEgress was developed by extending SAFEgress with new functions 
that incorporated fire impacts, it was hypothesized that the simulation 
results reported by FREEgress would be largely consistent with those 
reported by SAFEgress when the scale of fire was small, but the dis
crepancies would increase as the scale of fire increased and the fire 
impacts became significant. Additionally, FDS + Evac is a typical 
commercial solution for fire evacuation simulation. It is one of the few 
existing tools that can partially account for the physiological impacts of 
fire hazards on the evacuees, mainly restricted to the effects of smoke 
density on evacuee's motion speed the and effects of smoke toxicity on 
their health conditions. Hypothesis II: since FREEgress considers rela
tively more comprehensive fire impacts compared to FDS + Evac, the 
simulation results reported by FREEgress would reflect more significant 
influence of fire hazards on evacuees' behaviors and the evacuation 
outcomes. To test the above hypotheses and verify FREEgress, a series 
of simulation experiments were conducted, as reported below. 

4.2. Scenario descriptions and simulation settings 

The indoor space of a museum [21] generated by AutoCAD [51] 
(version 2018) was used in the simulation. The floor plan of the mu
seum is shown in Fig. 6. In the simulation, the fire, set in Pyrosim 
(version 2017.1.0131), initially broke out at certain locations inside the 
museum, and then began to spread within the entire indoor space. The 
growth of fire was simulated using the T-square fire model [52], for 
which the heat release rate (HRR) was set to increase over time until it 
reached the maximum value that was set to be 8000 kW [53]. The 
spread of fire and smoke was simulated using FDS model (version 6.5.3) 
with Pyrosim (version 2017.1.0131). Fire data (temperature, heat flux, 
FED, FIC and extinction coefficient) were recorded at a one-second 
interval and transferred to FREEgress as explained in Section 3.3. In the 
simulation, a total of 48 occupants were modeled as intelligent agents 
in four exhibition areas, which represented a typical peak-hour density 
of visitors in museums [21]. These exhibition areas are illustrated with 
red boxes in Fig. 7. The agents' initial locations were evenly distributed 
in these areas. The initial location of each agent within its designated 
area was randomly generated in the simulation. 

Three key factors were introduced in the simulations, the variations 
of which resulted in a number of different simulation scenarios. The 
first factor was initial fire location. The fire could break out near room 
entrances, blocking critical evacuation paths, or inside rooms, blocking 
non-evacuation critical paths, as illustrated in Fig. 8. The second factor 

was delay time. Prior research pointed out that in many cases notice
able delay was observed between when the fire broke out and when 
evacuees began to escape [54,55]. A longer delay time would mean that 
the evacuees would be faced with larger fire hazards duration eva
cuation. In the simulation, different delay time of evacuation (i.e., 0 s or 
90 s) was set for all agents. The third factor was behavior type. Prior 
research pointed out that crowds had different behavioral patterns 
during fire evacuation [4]. Two behavior types were modeled in 
FREEgress, including perception-based behavior, which assumed that 
agents' navigation decision was dominated by their perception of the 
surrounding environment such as perception with navigation objects, 
and knowledge-based behavior, which assumed that agents' navigation 
decision was dominated by their prior knowledge about the space such 
as the familiarity with the location of exits. 

5. Model verification results 

5.1. Comparison between FREEgress and SAFEgress 

For comparison between FREEgress and SAFEgress, four scenarios 
were simulated in FREEgress enumerating all possible combinations of 
initial fire location and behavior type, and two scenarios were simu
lated in SAFEgress enumerating all possible values of behavior type. 
Delay time was set to be zero in all scenarios, thus in FREEgress the 
agents began to escape as soon as the fire broke out, so as to be con
sistent with the settings in SAFEgress. These scenarios are numbered 
from 1 to 6, and their settings are summarized in Table 2. Each scenario 
was simulated 10 times, and the convergence of the results from these 
simulations was checked. In terms of the median and average evacua
tion times, the ratio of standard deviation value to the average value 
did not exceed 8.0% for all scenarios, indicating notable convergence of 
the simulation results. The results were then averaged to avoid possible 
impact of randomness of agents' initial locations on the simulation re
sults. 

FREEgress-based and SAFEgress-based simulation results were 
compared, in terms of maximum, median and average evacuation 
times, as well as speed, route availability, number of fatalities, eva
cuation process and trajectory, which are key behavioral components 
for the verification of evacuation models [56]. The route availability 
referred to the routes available to evacuees [56]. It was represented by 
the accessibility of doors 1–4 (Fig. 7) in this study. A door could become 
inaccessible owing to smoke, heat and high temperature in its sur
roundings. The evacuation process was depicted by the number of 
agents navigating to exits, which was changing dynamically over time 
from when the fire broke out to when all agents reached the exits or lost 
escape capability. Three scenarios (1, 2 and 5) assumed evacuee agents 
followed their knowledge to evacuate. As the simulation results failed 
the normality test, the Kruskal-Wallis H test was conducted to compare 

Fig. 6. Synchronous visualization of temperature change and movement of agents.  
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the maximum, median and average evacuation times, average speed 
and the number of fatalities between these three scenarios, and Pear
son's Chi-squared test was conducted to compare the route availability. 
The statistical analysis results, as summarized in Table 3, indicated that 
at the 95% significance level there was no significant difference be
tween scenario 1, 2 and 5 in terms of maximum, median and average 
evacuation times, route availability and number of fatalities. The only 
exception was the average speed, which was found to be significantly 
different between the three scenarios. The statistical significance of this 
difference was mainly owing to the small standard deviation (0.01 m/ 
s), while the magnitude of the difference was rather small and negli
gible (less than 1.5%). 

In addition, one simulation was randomly selected for each sce
nario, and the results from these simulations are plotted in Figs. 9 and 
10 for further comparison. Fig. 9 illustrates the evacuation process in 
the three simulations. The Euclidean relative difference (ERD), Eu
clidean projection coefficient (EPC) and Secant cosine (SC), three 
widely used metrics that represented the overall agreement between 
two curves [56,57], were calculated to measure the agreement between 
each pair of curves in the figure. The ranges of ERD, EPC and SC are in 
[0, +∞), [0, +∞) and [−1, 1], respectively. Two curves could be 
considered identical if ERD = 0, EPC = 1 and SC = 1. The acceptance 

criteria that should be satisfied for considering two curves as compar
able, as recommend in prior research [57], are: ERD ≤ 0.45, 
0.6 ≤ EPC ≤ 1.4 and, SC ≥ 0.6, with s/n ≤ 0.05, where s represents 
the period of noise in the data and n is the number of occupants. As it 
was necessary to keep the ratio s/n as low as possible [57], the value of 
s was chosen to be 1. In Fig. 9, the maximum ERD value and the 
minimum EPC and SC values between any two curves were 0.13, 0.93 
and, 0.63 (s = 1, n = 48, s/n = 0.02), respectively, which satisfied the 
acceptance criteria, indicating that the trend of the evacuation pro
cesses was generally consistent between scenarios 1, 2 and 5. Fig. 10 
shows the trajectories of all agents in the three simulations, which also 
indicated high consistency between the three different scenarios. It 
needs to be noted that the initial positions of the agents were randomly 
generated within the designated areas and hence not exactly the same 
for each simulation. Since multiple simulations were run for each si
mulation, the impact of randomness of the initial agent positions could 
be avoided. 

Similarly, the results from scenarios 3, 4 and 6, which all assumed 
that evacuees only relied on their perception of the surrounding en
vironment when making navigation decisions, were compared. As the 
simulation results failed the normality test, the Kruskal-Wallis H test 
was conducted to compare the maximum, median and average 

Fig. 7. Floor plan of the museum and agents' initial locations for simulation.  

Fig. 8. Two sets of fire locations.  
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evacuation times, average speed and the number of fatalities between 
these three scenarios, and Pearson's Chi-squared test was conducted to 
compare the route availability. The statistical analysis results are 
summarized in Table 4. The evacuation times shown in the table were 
calculated after excluding agents that failed to escape, as these agents 
got lost at the emergency scenes and spent prolonged time that was very 
different than that of successfully escaped agents. The results indicated 
that at the 95% significance level there was no significant difference 
between scenarios 3, 4 and 6 in terms of maximum, median and average 
evacuation times, route availability and number of fatalities. The only 
exception was the average speed, which was found to be significantly 
different between the three scenarios. The statistical significance of this 
difference was mainly owing to the small standard deviation (0.01 m/ 
s), while the magnitude of the difference was rather small and negli
gible (less than 1.5%). It needs to be noted that, in a few FREEgress- 
based simulations, one agent (2.1% of all agents) spent prolonged time 
looking for exits and taking detours, and eventually was not able to 
egress the museum. The above results indicated that, when only agents 
that successfully evacuated were counted, all performance indices were 
highly consistent between the three scenarios. It also needs to be noted 
that the initial positions of the agents were randomly generated within 
the designated areas and hence not exactly the same for each 

simulation. Since multiple simulations were run for each simulation, 
the impact of randomness of the initial agent positions could be 
avoided. Fig. 11 illustrates the evacuation process in the three simu
lations. As shown in Fig. 11, the maximum ERD value and minimum 
EPC and SC values between any two curves were 0.13, 0.96 and 0.65 
(s = 1, n = 48, s/n = 0.02), respectively, which satisfied the accep
tance criteria, indicating that the trend of the evacuation processes was 
generally consistent between scenarios 3, 4 and 6, despite that one 
agent (2.1% of all agents) in scenarios 3 and 4 spent prolonged time 
looking for exits and taking detours and eventually was not able to 
egress the museum, while all agents successfully evacuated in scenario 
6. This demonstrated that the whole evacuation process existed rea
sonable differences between scenarios 3, 4 and 6. 

In conclusion, the above results showed that the simulation results 
of FREEgress and SAFEgress were consistent when the scale of fire was 
small, which supported Hypothesis I and suggested that FREEgress had 
appropriately inherited the efficacy of SAFEgress. 

5.2. Comparison between FREEgress and FDS + Evac 

For comparison between FREEgress and FDS + Evac, two scenarios 
were simulated in FREEgress and FDS + Evac enumerating all combi
nations of initial fire locations. Delay time was set to be 90 s in all 
scenarios to model the situation that the fire had significantly grown 
and spread when evacuees began to evacuate. To make the simulations 
comparable, agents in FREEgress and FDS + Evac were assigned with 
the same physical profile, such as body size, gender and movement 
speed [34], as summarized in Table 5. In addition, in FDS + Evac each 
agent was assigned to evacuate from a specific exit, while in FREEgress 
each agent was configured to adopt the knowledge-based behavior, 
which made the agent to also evacuate from a specific exit. It also 
needed to be noted that the average speed was not reported as an 
evacuation outcome in FDS + Evac. These scenarios are numbered 
from 7 to 10, and their settings are summarized in Table 6. Each sce
nario was simulated 10 times, and the convergence of the results from 
these simulations was checked. In terms of the median and average 
evacuation times, the ratio of standard deviation value to the average 
value did not exceed 3.2% for all scenarios, indicating notable con
vergence of the simulation results. The results were then averaged to 
avoid possible impact of randomness of agents' initial locations on the 
simulation results. 

Table 2 
Settings for simulation scenarios 1–6.       

Simulator Simulation scenario Initial fire location 
(blocking critical evacuation paths?) 

Delay time 
(s) 

Behavior type  

FREEgress  1 Yes  0 Knowledge-based  
2 No  0 Knowledge-based  
3 Yes  0 Perception-based  
4 No  0 Perception-based 

SAFEgress  5 –  0 Knowledge-based  
6 –  0 Perception-based 

Table 3 
Comparison of simulation results from scenarios 1, 2 and 5.          

Simulator Simulation scenario Evacuation time (s) Average speed (m/s) Route availability Number of fatalities 

Maximum Median Average  

FREEgress  1 77.6  ±  1.5 50.5  ±  2.5 50.4  ±  1.5 1.30  ±  0.01 Door 2&4 0.0  ±  0.0  
2 76.3  ±  0.7 50.3  ±  2.1 49.4  ±  0.99 1.32  ±  0.01 Door 2&4 0.0  ±  0.0 

SAFEgress  5 76.5  ±  1.3 49.5  ±  2.1 49.3  ±  1.2 1.32  ±  0.01 Door 2&4 0.0  ±  0.0 
P-value  0.068 0.736 0.164 0.017 1.000 1.000 

Note: The values in the table are based on the results of 10 simulations. The Kruskal-Wallis H test was conducted to analyze the results of maximum, median and 
average evacuation times, average speed and number of fatalities. Pearson's Chi-squared test was conducted to analyze the results of route availability.  

Fig. 9. Evacuation processes in scenarios 1, 2 and 5.  
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FREEgress-based and FDS + Evac-based simulation results were 
compared, in terms of total evacuation time, speed, route availability, 
number of fatalities, evacuation process and trajectory. Taking two 
scenarios (7 and 9), both of which assumed that the fire blocked critical 
evacuation paths and the delay time was 90 s, as an example. As the 
simulation results failed the normality test, the Mann-Whitney U test 
was conducted to compare the maximum, median and average eva
cuation times, average speed and the number of fatalities between these 
two scenarios, and Pearson's Chi-squared test was conducted to com
pare the route availability. The statistical analysis results summarized 
in Table 7 indicated that at the 95% significance level scenarios 7 and 9 
were significantly different in terms of maximum, median and average 
evacuation times and route availability. The main reason was that 
FDS + Evac only considered the effects of smoke density on evacuees' 
motion speed and smoke toxicity on evacuees' health conditions, 
whereas FREEgress also considered various other impacts of fire on 
health, such as heat radiation and heat convection. Therefore, the 
motion speed of agents in FREEgress was slower than that in 
FDS + Evac under the same smoke density, and thus the evacuation 

Fig. 10. Egress trajectories of agents in scenraios 1, 2 and 5.  

Table 4 
Comparison of simulation results from scenarios 3, 4 and 6.          

Simulator Simulation scenario Evacuation time 
(s) 

Average 
speed (m/s) 

Route availability Number of fatalities 

Maximum Median Average  

FREEgress  3 77.0  ±  12.0 35.3  ±  2.8 38.8  ±  2.3 1.33  ±  0.01 Door 1–4 0.4  ±  0.5  
4 72.5  ±  11.0 35.0  ±  2.0 36.7  ±  1.8 1.35  ±  0.01 Door 1–4 0.2  ±  0.4 

SAFEgress  6 69.3  ±  17.6 34.0  ±  2.3 36.0  ±  1.7 1.34  ±  0.01 Door 1–4 0.0  ±  0.0 
P-value  0.179 0.384 0.063 0.011 1.000 0.089 

Note: The values in the table are based on the results of 10 simulations. The Kruskal-Wallis H test was conducted to analyze the results of maximum, median and 
average evacuation times, average speed and number of fatalities. Pearson's Chi-squared test was conducted to analyze the results of route availability.  

Fig. 11. Evacuation processes in scenarios 3, 4 and 6.  

Z. Li, et al.   Automation in Construction 120 (2020) 103395

11



time in FREEgress was longer than that in FDS + Evac. With respect to 
the difference in route availability, it was caused by the fact that, unlike 
FREEgress, FDS + Evac did not consider that flame and smoke could 
block certain routes and force evacuees to take detours. One simulation 
was randomly selected for each scenario, and the results from these 
simulations are plotted in Figs. 12 and 13 for further comparison. In  
Fig. 12, the ERD, EPC and SC values between the two curves were 0.21, 
0.97 and 0.37 (s = 1, n = 48, s/n = 0.02), respectively, which did not 
satisfy the acceptance criteria, indicating that there was significant 
difference between the evacuation processes of scenarios 7 and 9. The 
agents' evacuation performance was generally consistent between the 
two scenarios before 150 s, after which some agents in scenario 7 had 
noticeably lower performance, mainly due to higher fire impacts im
posed on them that led to slower motion speed. Fig. 13 shows the 
trajectories of all agents in the two simulations. There was significant 
difference between the two plots, which was mainly caused by the fact 
that, unlike FREEgress, FDS + Evac did not consider that flame and 
smoke could block some routes and force evacuees to take detours when 
computing agents' evacuation routes. Such impacts could be significant 
when the fire was within critical evacuation routes (i.e., location I). It 
needs to be noted that the initial positions of the agents were randomly 
generated within the designated areas and hence not exactly the same 
for each simulation. Since multiple simulations were run for each si
mulation, the impact of randomness of the initial agent positions could 
be avoided. Lastly, similar findings were obtained from comparisons 
between scenarios 8 and 10. For the sake of brevity, the simulation 
results from scenarios 8 and 10 are not analyzed and discussed in detail. 
All results from these two scenarios can be found in the Supplemental 
materials (Tables S1–S2 and Figs. S1–S2) of this paper. 

In conclusion, the above results show that the FREEgress had gen
erally comparable simulation performance to FDS + Evac, both of 
which incorporated smoke density and smoke toxicity impacts on 
evacuees' physiological conditions. The results also showed that 
FREEgress was more advantageous in that it also accounted for the 
physiological impacts of heat, and the impact of fire hazards on evac
uee's route selection strategies and motion speed, which supported 
Hypothesis II. As a result, FREEgress was able to avoid underestimating 
the fire impacts on crowd evacuation. 

6. Case study 

In this section, FREEgress was used in a case study to conduct a 
series of simulations and to investigate how the aforementioned three 
factors, namely initial fire location, delay time and behavior type, 
might affect crowd evacuation in building fire emergencies. The goal of 
this case study was to demonstrate the functionality of FREEgress and 
its potential value in simulating various building evacuation scenarios 
and supporting subsequent analyses. 

All simulations in the case study used the same environmental and 
agent settings as those in the model verification. A total of 30 scenarios 

were simulated. These scenarios enumerated all possible combinations 
of initial fire location (where fire blocked critical evacuation paths or 
not), delay time (0 s, 30 s, 60 s, 90 s, or 120 s) and behavior type 
(perception-based behavior, knowledge-based behavior, or following- 
leader behavior). The following-leader behavior assumed that an 
agent's navigation decision was impacted by a group leader, who was 
familiar with the surrounding environment and adopted knowledge- 
based behavior, and the crowd followed the group leader to evacuate 
[15]. The naming convention of Lc/ncT0/30/60/90/120Bp/k/f was applied to 
all scenarios to clearly demonstrate their settings. Specifically, the 
characters L, T and B referred to initial fire location, delay time and 
evacuee behavior, respectively, and their subscripts indicated the spe
cific settings in a scenario. For example, scenario LcT0Bp referred to a 
scenario where the fire blocked critical evacuation paths, the delay time 
was zero, and the agents adopted the perception-based behavior; 
Likewise, scenario LncT30Bk referred to a scenario where the fire did not 
block critical evacuation paths, the delay time was 30 s, and the agents 
adopted the knowledge-based behavior. All findings of the case study 
are reported and discussed as follows. 

6.1. The impact of initial fire location 

Based on analysis of the simulation results, the impacts of the initial 
fire location on maximum evacuation time, trajectory and health con
ditions were dependent on the settings of the scenarios. Specifically:  

1) When the delay time ≤30 s and the agents adopted knowledge- 
based behavior or following-leader behavior, the initial fire location 
barely affected the evacuation outcomes. Taking the comparison 
between scenarios LcT0Bk and LncT0Bk as an example. In both these 
scenarios, the delay time was zero, and the agents adopted the 
knowledge-based behavior. The fire blocked critical evacuation 
paths in scenario LcT0Bk and did not in scenario LncT0Bk. The si
mulation results, as summarized in Table 8, showed that the dif
ference for the agents' maximum evacuation time in the two sce
narios were within 3.8% and all agents successfully evacuated. As 
shown in Fig. 14, the ERD, EPC and SC values between scenarios 
LcT0Bk and LncT0Bk were 0.09, 1.01 and 0.75 (s = 1, n = 48, s/ 
n = 0.02), respectively, which satisfied the acceptance criteria, in
dicating the evacuation processes were generally consistent between 
these two scenarios. The above results suggested that different in
itial fire locations had little impact on the agents' evacuation per
formance. This was further supported by Figs. 15–16, which show 
that the agents' trajectories and the health condition of the agents 
were highly comparable between these two scenarios. Similar con
clusions could also be derived from comparisons between scenarios 
LcT30Bk vs. LncT30Bk, LcT0Bf vs. LncT0Bf and LcT30Bf vs. LncT30Bf. For 
the sake of brevity, the simulation results from these comparisons 
are not analyzed and discussed in detail. All results of these sce
narios can be found in the Supplemental materials (Table S3) of this 

Table 5 
Agents' physical profiles in both FREEgress and FDS + Evac.       

Population type Radius of whole body circle (m) Radius of torso circle (m) Radius of shoulder circle (m) Movement speed (m/s)  

Adult male 0.27 0.16 0.10 1.35 

Table 6 
Settings for simulation scenarios in 7–10.       

Simulator Simulation scenario Initial fire location (blocking critical evacuation paths?) Delay time (s) Behavior type  

FREEgress  7 Yes  90 Knowledge-based  
8 No  90 Knowledge-based 

FDS + Evac  9 Yes  90 –  
10 No  90 – 
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paper.  

2) When the delay time  >  30 s and regardless of the behavior type, 
fire that blocked critical evacuation paths caused agents to take 
detours. This trend became more remarkable as the delay time in
creased. Taking the comparison between scenarios LcT60Bk and 
LncT60Bk as an example. In both these scenarios, the delay time was 
60 s, and the agents adopted the knowledge-based behavior. The fire 
blocked critical evacuation paths in scenario LcT60Bk and did not in 
scenario LncT60Bk. A large portion of the agents in scenario LcT60Bk 

changed their direction and chose the door far away from the initial 
fire location to evacuate, which led to detoured trajectories that 
were different from the trajectories in scenario LncT60Bk. When the 
delay time increased to 90 s, the difference between trajectories 
from scenario LcT90Bk and those from scenario LncT90Bk became 
more significant. The simulation results are also illustrated in  
Figs. 17–18. The results suggested that when fire blocked critical 

evacuation paths, agents would need to take detours to avoid the 
fire, and their trajectories as well as evacuation performance would 
be significantly impacted. Similar conclusions could also be derived 
from comparisons between scenarios LcT120Bk vs. LncT120Bk (enu
meration over behavior types and values of delay time for 60 s, 90 s 
and 120 s). For the sake of brevity, the simulation results from these 
comparisons are not analyzed and discussed in detail. All results of 
these scenarios can be found in the Supplemental materials (Table 

Table 7 
Comparison of simulation results from scenarios 7 and 9.          

Simulator Simulation scenario Evacuation time (s) Average speed (m/s) Route availability Number of fatalities 

Maximum Median Average  

FREEgress  7 369.8  ±  38.2 148.0  ±  2.0 176.7  ±  4.5 1.11  ±  0.01 Door 1&4 0.0  ±  0.0 
FDS + Evac  9 206.0  ±  2.1 144.9  ±  1.6 150.1  ±  1.0 – Door 2–4 0.0  ±  0.0 
P-value   < 0.001 0.003  < 0.001 – 0.040 1.000 

Note: The values in the table are based on the results of 10 simulations. The Mann-Whitney U test was conducted to analyze the results of maximum, median and 
average evacuation times, average speed and number of fatalities. Pearson's Chi-squared test was conducted to analyze the results of route availability.  

Fig. 12. Evacuation processes in scenarios 7 and 9.  

Fig. 13. Egress trajectories of agents in scenraios 7 and 9.  

Table 8 
Comparisoin of simulation results from scenarios LcT0Bk and LncT0Bk.      

Simulation 
scenario 

Initial fire location 
(blocking critical 
evacuation paths?) 

Maximum 
evacuation time 
(s) 

Number of 
fatalities  

LcT0Bk Yes  76  0 
LncT0Bk No  79  0 

Fig. 14. Evacuation processes in scenarios LcT0Bk and LncT0Bk.  
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S3) of this paper.  

3) When the delay time  >  30 s, fire that blocked critical evacuation 
paths exposed agents to noticeable risks, as reflected by their health 
conditions. Taking the comparison between scenarios LcT60Bp and 
LncT60Bp as an example. In both scenarios, the delay time was 60 s, 
and the agents adopted the perception-based behavior. The fire 
blocked critical evacuation paths in scenario LcT60Bp and did not in 
scenario LncT60Bp. The health conditions of the agents in scenario 
LcT60Bp were remarkably lower than those in scenario LncT60Bp. The 
simulation results are also illustrated in Fig. 19. In addition, as 
shown in Table 9, compared to scenario LncT60Bp, fatalities were 
much higher in scenario LcT60Bp. This was mainly because more 

agents lost escape capability at an earlier stage and the evacuation 
process was forced to end sooner in scenario LcT60Bp. This suggested 
that different initial fire locations would expose the agents to dif
ferent levels of risk, imposing significant impact on the evacuation 
outcomes. Similar conclusions could also be derived from compar
isons between scenarios LcT90Bp vs. LncT90Bp (enumeration over 
behavior types and values of delay time for 60 s, 90 s and 120 s). For 
the sake of brevity, the simulation results from these comparisons 
are not analyzed and discussed in detail. All results of these sce
narios can be found in the Supplemental materials (Table S3) of this 
paper. 

6.2. The impact of delay time 

Based on analysis of the simulation results, the impacts of delay 
time on maximum and net evacuation time, trajectory and health 
conditions were dependent on the settings of the scenarios. Specifically:  

1) When the delay time ≥30 s and the agents adopted knowledge- 
based or following-leader behavior, longer delay time generally 
correlated with longer maximum evacuation time and net evacua
tion time (maximum evacuation time minus delay time). Such im
pact grew disproportionally fast as the delay time increased. Taking 
the comparison from scenarios LcT0Bk to LcT120Bk (enumeration 
over values of delay time) as an example. In these scenarios, the fire 
blocked critical evacuation paths and the agents adopted the 
knowledge-based behavior. The simulation results, as summarized 
in Table 10, showed that the net evacuation time was nearly the 
same in scenarios LcT0Bk and LcT30Bk. However, without counting 
the delay time, it took the agents 83 s (106%) longer to evacuate 
from the museum in scenario LcT60Bk compared to LcT30Bk, while 
agents in scenario LcT90Bk needed 120 s (75%) longer to egress 

Fig. 15. Egress trajectories of agents in scenarios LcT0Bk and LncT0Bk.  

Fig. 16. Average health condition of agents in scenarios LcT0Bk and LncT0Bk.  

Fig. 17. Egress trajectories of agents in scenarios LcT60Bk and LncT60Bk.  
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compared to LcT60Bk. The net evacuation time increased by another 
135 s (48%) in LcT120Bk, compared to LcT90Bk, when the delay time 
increased to 120 s. The above simulation results were plotted in  
Fig. 20. The maximum ERD value and minimum EPC and SC values 
between any two curves were 0.83, 0.25 and 0.01 (s = 1, n = 48, s/ 
n = 0.02), respectively, which did not satisfy the acceptance cri
teria, indicating that there was notable difference between the 
evacuation processes of these five scenarios. The results suggested 

that the time required for the agents to complete evacuation would 
be significantly prolonged when the delay time increased. Similar 
conclusions could also be derived from comparisons between sce
narios LncT0Bk to LncT120Bk, LcT0Bf to LcT120Bf and LncT0Bf to 
LncT120Bf (enumeration over values of delay time). For the sake of 
brevity, the simulation results from these comparisons are not 
analyzed and discussed in detail. All results of these scenarios can be 
found in the Supplemental materials (Table S3) of this paper.  

2) When the fire blocked non-critical evacuation paths, delay time 
barely impacted agents' evacuation route selection in scenarios. 
Taking the comparison between scenarios LncT0Bk to LncT120Bk 

(enumeration over values of delay time) as an example. In these 
scenarios, the fire did not block critical evacuation paths and the 
agents adopted the knowledge-based behavior. As the delay time 
increased from 0 to 120 s, agents showed highly consistent trajec
tories. The results are further illustrated in Fig. 21. The results 
suggested that different delay time had limited impact on the agents' 
evacuation trajectories, as long as the critical evacuation paths were 
not blocked by fire. Similar conclusions could also be derived from 
comparisons between scenarios LncT0Bp to LncT120Bp as well as 
LncT0Bf to LncT120Bf (enumeration over values of delay time). For the 
sake of brevity, the simulation results from these comparisons are 
not analyzed and discussed in detail. All results of these scenarios 
can be found in the Supplemental materials (Table S3) of this paper.  

3) When the delay time > 90 s, longer delay time exposed the agents to 
high risks. Taking the comparison from scenarios LcT0Bk to LcT120Bk 

Fig. 18. Egress trajectories of agents in scenarios LcT90Bk and LncT90Bk.  

Fig. 19. Average health condition of agents in scenarios LcT60Bp and LncT60Bp.  

Table 9 
Comparisoin of simulation results from scenarios LcT60Bp and LncT60Bp      

Simulation 
scenario 

Initial fire location 
(blocking critical 
evacuation paths?) 

Maximum 
evacuation time 
(s) 

Number of 
fatalities  

LcT60Bp Yes  434  17 
LncT60Bp No  532  10 

Table 10 
Comparisoin of simulation results from scenarios LcT0Bk to LcT120Bk (enu
meration over values of delay time).       

Simulation 
scenario 

Delay 
time (s) 

Maximum 
evacuation time 
(s) 

Net evacuation 
time (s) 

Number of 
fatalities  

LcT0Bk  0  76  76  0 
LcT30Bk  30  108  78  0 
LcT60Bk  60  221  161  0 
LcT90Bk  90  371  281  0 
LcT120Bk  120  536  416  12 

Fig. 20. Evacuation processes in scenarios LcT0Bk to LcT120Bk (enumeration 
over values of delay time). 
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(enumeration over values of delay time) as an example. In these 
scenarios, the fire blocked critical evacuation paths and the agents 
adopted the knowledge-based behavior. As the delay time increased 
from 0 to 90 s, the health conditions of agents were nearly con
sistent, and no fatalities occurred. However, as the delay time in
creased from 90 to 120 s, the health conditions of agents sig
nificantly decreased, and fatalities substantially increased. The 
simulation results are further illustrated in Fig. 22 and shown in  
Table 10. The results suggested that longer delay time significantly 
lowered agents' health condition. Similar conclusions could also be 
derived from comparisons between scenarios LncT0Bk to LncT120Bk, 
LcT0Bp to LcT120Bp, LncT0Bp to LncT120Bp, LcT0Bf to LcT120Bf and 
LncT0Bf to LncT120Bf (enumeration over values of delay time). For the 
sake of brevity, the simulation results from these comparisons are 
not analyzed and discussed in detail. All results of these scenarios 
can be found in the Supplemental materials (Table S3) of this paper. 

6.3. The impact of behavior type 

Based on analysis of the simulation results, the impacts of behavior 
type on maximum evacuation time, trajectory and health conditions 
were dependent on the settings of the scenarios. Specifically:  

1) When the delay time ≥30 s, the knowledge-based evacuation 
strategy was the most efficient, followed by the following-leader 
strategy and then the perception-based strategy. Taking the com
parison between scenarios LcT60Bp, LcT60Bk and LcT60Bf as an ex
ample. In these scenarios, the delay time was 60 s and the fire 
blocked the critical evacuation paths. The agents adopted the per
ception-based behavior in scenario LcT60Bp, knowledge-based be
havior in scenario LcT60Bk and following-leader behavior in scenario 
LcT60Bf. The simulation results, as summarized in Table 11, showed 
that fatalities in scenario LcT60Bp were significantly larger than 
those in scenario LcT60Bk and LcT60Bf. Moreover, it took the agents 
in scenario LcT60Bp 213 s (49%) and 105 s (24%) longer to evacuate 

Fig. 21. Egress trajectories of agents in scenarios LncT0Bk to LncT120Bk (enumeration over values of delay time).  
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from the museum compared with scenario LcT60Bk and LcT60Bf, re
spectively. The above simulation results are plotted in Fig. 23. The 
maximum ERD value and minimum EPC and SC values between any 
two curves were 0.59, 0.95 and 0.22 (s = 1, n = 48, s/n = 0.02), 
respectively, which did not satisfy the acceptance criteria, indicating 
that notable differences existed between the evacuation processes of 
these three scenarios. The illustrations suggested that agents with 
the knowledge-based behavior and following-leader behavior were 
actually more efficient than agents with the perception-based be
havior in finding and reaching the exits. Similar conclusions could 
also be derived from comparisons between scenarios LcT30Bp vs. 
LcT30Bk vs. LcT30Bf as well as LncT30Bp vs. LncT30Bk vs. LncT30Bf 

(enumeration over values of delay time for 30 s, 60 s, 90 s and 
120 s). For the sake of brevity, the simulation results from these 
comparisons are not analyzed and discussed in detail. All results of 
these scenarios can be found in the Supplemental materials (Table 
S3) of this paper. 

2) Agents with knowledge-based behavior and following-leader beha
vior exhibited consistent trajectories, which were different than 
those by agents with perception-based behavior. Taking the com
parison between scenarios LcT0Bp, LcT0Bk and LcT0Bf as an example. 
In these scenarios, the delay time was zero second and the fire 
blocked critical evacuation paths. The agents adopted the percep
tion-based behavior in scenario LcT0Bp, knowledge-based behavior 
in scenario LcT0Bk and following-leader behavior in scenario LcT0Bf. 
The agents' trajectories in scenario LcT0Bk were highly similar to 
those in scenario LcT0Bf, but distinct from those in scenario LcT0Bp. 
The simulation results are further illustrated in Fig. 24. The results 
suggested that different behaviors significantly impacted agents' 
route selection. Similar conclusions could also be derived from 
comparisons between scenarios LcT30Bp vs. LcT30Bk vs. LcT30Bf as 
well as LncT0Bp vs. LncT0Bk vs. LncT0Bf (enumeration over values of 
delay time). For the sake of brevity, the simulation results from 
these comparisons are not analyzed and discussed in detail. All re
sults of these scenarios can be found in the Supplemental materials 
(Table S3) of this paper.  

3) When the delay time ≥30 s, agents with perception-based behavior 
were exposed to the most health risks and agents with knowledge- 
based behavior were exposed to the least health risks. Taking the 
comparison between scenarios LcT90Bp, LcT90Bk and LcT90Bf as an 
example. In these scenarios, the delay time was 90 s and the fire 
blocked the critical evacuation paths. The agents adopted the per
ception-based behavior in scenario LcT90Bp, knowledge-based be
havior in scenario LcT90Bk and following-leader behavior in scenario 
LcT90Bf. Agents in scenario LcT90Bk and scenario LcT90Bf were fully 
or almost fully healthy when they reached the exits. However, the 
health conditions of agents in scenario LcT90Bp were remarkably 
decreased during evacuation. The simulation results are further il
lustrated in Fig. 25. The results suggested that agents with knowl
edge-based behavior and following-leader behavior were more 
capable of evacuating from the burning museum than agents with 
perception-based behavior. Similar conclusions could also be de
rived from comparisons between scenarios LcT30Bp vs. LcT30Bk vs. 
LcT30Bf as well as LncT30Bp vs. LncT30Bk vs. LncT30Bf (enumeration 
over values of delay time for 30 s, 60 s, 90 s and 120 s). For the sake 
of brevity, the simulation results from these comparisons are not 
analyzed and discussed in detail. All results of these scenarios can be 
found in the Supplemental materials (Table S3) of this paper. 

6.4. Discussions 

To sum up, the main findings of the case study included that 1) 
when evacuation delay time was short, the initial fire location had little 
impact on the evacuation outcomes. When the delay time increases, the 
initial fire location started to impact the evacuation outcomes (such as 
prolonging evacuation and increasing fatalities); 2) Controlling for 
delay time, when the fire broke out on critical evacuation paths, the 
evacuation outcomes were worse (i.e., higher number of fatalities, more 
damaged health conditions and changing evacuation route selection) 
compared to cases where the fire broke out on non-critical evacuation 
paths; and 3) Controlling for delay time and fire pattern in the case 
study, the evacuation was the most efficient when the occupants 
adopted the knowledge-based behavior. The evacuation became less 
efficient when the occupants adopted the following-leader behavior, 
and was the least efficient when they adopted the perception-based 
behavior and made their navigation decisions based on visible building 
features (such as signs and doors). 

It needs to be noted that the above findings are based on a particular 
spatial configuration in the case study and have not been generalized to 
all buildings. That being said, the methodology demonstrated in the 
case study to incorporate different factors and test their individual and 
collective effects can also be applied to other buildings using the 

Fig. 22. Average health condition of agents in scenarios LcT0Bk to LcT120Bk 

(enumeration over values of delay time). 

Table 11 
Comparisoin of simulation results in scenarios LcT60Bp, LcT60Bk and LcT60Bf.      

Simulation 
scenario 

Behavior pattern Maximum evacuation 
time (s) 

Number of 
fatalities  

LcT60Bp Perception-based  434  17 
LcT60Bk Knowledge-based  221  0 
LcT60Bf Following-leader  329  0 

Fig. 23. Evacuation processes in scenarios LcT60Bp, LcT60Bk and LcT60Bf.  
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functionalities of FREEgress, which provides the possibility of testing 
the same sets of factors in other buildings to assess the transferability of 
the reported findings in future research. In addition, future research can 
also include studies that assess the effects of the factors in standard 
tests, such as those developed by the International Maritime 
Organization (IMO) [58] or their modified versions developed for 
building contexts by the NIST [56], for further validation of FREEgress 
and improved transferability of the findings. 

The proposed FREEgress model can be used to support both the 
safety design of new buildings and maintenance and emergency man
agement of constructed facilities. Specifically, it can be used to assess 
the egress performance of new building designs in different fire sce
narios, to evaluate evacuation training and procedures that directly 
influence the delay time and evacuation behaviors of building 

occupants, to assess the effectiveness of fire emergency management 
plans and to investigate the impacts of key factors on human evacuation 
efficiency so as to support fire emergency response decisions. 

7. Conclusions and future research 

A multiagent-based building fire evacuation simulation model, 
FREEgress, was developed in this study. By simulating the influences of 
heat, temperature, toxic gas and smoke particles on evacuees' mobility, 
navigation decision making and health conditions, FREEgress is capable 
of incorporating dynamic fire hazard impacts in the simulation of na
vigation of individual evacuees and the overall evacuation process. The 
efficacy of FREEgress was verified by comparing its simulation results 
with those of SAFEgress and FDS + Evac. Furthermore, through using 
FREEgress, the impacts of three important factors, including initial fire 
location, evacuation delay time and evacuee behavior type, on the 
evacuation process and evacuation outcomes were examined in a case 
study, based on the simulation results in 30 different scenarios. The 
case study results showed that, by modeling the fire pattern and con
sidering its dynamic physiological and psychological effects on simu
lated occupants, FREEgress is able to demonstrate the interaction ef
fects of different variables that can critically determine the outcomes of 
evacuation. 

Several efforts could be made in future research to improve 
FREEgress further to achieve more accurate, realistic and usable si
mulation of building fire evacuation. First, standard validation tests, 
such as those recommended by IMO [58] and NIST [56], can be applied 
to validate the proposed FREEgress model. Moreover, behavioral data 
with high validity (e.g., data from real fire events) when made available 
can also be used to validate FREEgress further. Second, more complex 
cognitive processes involved in human wayfinding behavior, especially 
those that may be evoked or impacted by emergency-induced mental 

Fig. 24. Egress trajectories of agents in scenarios LcT0Bp, LcT0Bk and LcT0Bf.  

Fig. 25. Average health condition of agents in scenarios LcT90Bp, LcT90Bk and 
LcT90Bf. 
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pressure caused by fire emergencies, could be examined and in
corporated in the simulation. Third, to better simulate individual be
havioral uncertainty with respect to agents' response to the dynamic 
impacts of fire hazard, instead of using the current rule-based model, a 
fuzzy approach can be incorporated into the agent decision-making 
process in the future work. Fourth, evacuee behavior such as fire
fighting may impact the development of fire hazards, which would 
consequently impact the effects of fire hazards on evacuee behaviors. 
This closed loop of impact could be modeled to better reflect the dy
namic nature of fire impacts on evacuation. Finally, better interfaces of 
FREEgress with building information modeling tools and fire dynamics 
simulation tools and better user interfaces could be developed to im
prove the level of data interoperability and user friendliness, enhancing 
its usability in real-world engineering applications. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influ
ence the work reported in this paper. 

Acknowledgments 

This material is based upon work supported by the National Natural 
Science Foundation of China (NSFC) under grant No. 71603145, the 
National Social Science Fund of China (NSSFC) under grant No. 
17ZDA117, the Humanities and Social Sciences Fund of the Ministry of 
Education (MOE) of China under grant No. 16YJC630052, and the 
Tsinghua University-Glodon Joint Research Centre for Building 
Information Model (RCBIM). The researchers at Tsinghua University 
would like to thank the NSFC, NSSFC, MOE and RCBIM for their sup
port. The research by the team at Stanford University Center for 
Integrated Systems is partially supported by a “Custom Research” grant 
through Stanford's Center for Integrated Systems from NEC 
Corporation. Any opinions, findings, conclusions or recommendations 
expressed in the paper are those of the authors and do not necessarily 
reflect the views of the funding agencies. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.autcon.2020.103395. 

References 

[1] B. Evarts, Fire Loss in the United States During 2018, National Fire Protection 
Association, 2019. https://www.nfpa.org//-/media/Files/News-and-Research/ 
Fire-statistics-and-reports/US-Fire-Problem/osFireLoss.pdf. 

[2] F. Mirahadi, B. McCabe, A. Shahi, IFC-centric performance-based evaluation of 
building evacuations using fire dynamics simulation and agent-based modeling, 
Autom. Constr. 101 (2019) 1–16, https://doi.org/10.1016/j.autcon.2019.01.007. 

[3] H. Ran, L. Sun, X. Gao, Influences of intelligent evacuation guidance system on 
crowd evacuation in building fire, Autom. Constr. 41 (2014) 78–82, https://doi. 
org/10.1016/j.autcon.2013.10.022. 

[4] X.S. Pan, C.S. Han, K. Dauber, K.H. Law, A multi-agent based framework for the 
simulation of human and social behaviors during emergency evacuations, AI and 
Society 22 (2007) 113–132, https://doi.org/10.1007/s00146-007-0126-1. 

[5] M.L. Chu, X.S. Pan, K.H. Law, Incorporating social behaviors in egress simulation, 
International Workshop on Computing in Civil Engineering 2011 (2011) 544–551, 
https://doi.org/10.1061/41182(416)67. 

[6] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, 
Nature 407 (2000) 487–490, https://doi.org/10.1038/35035023. 

[7] R. Challenger, C.W. Clegg, M.A. Robinson, Understanding crowd behaviours: sup
porting evidence, London: the Cabinet Office, (2009), https://assets.publishing. 
service.gov.uk/government/uploads/system/uploads/attachment_data/file/ 
192606/understanding_crowd_behaviour-supporting-evidence.pdf, Accessed date: 
24 November 2019, (ISBN 978-1-874321-24-8). 

[8] X. Zheng, T. Zhong, M. Liu, Modeling crowd evacuation of a building based on 
seven methodological approaches, Build. Environ. 44 (2009) 437–445, https://doi. 
org/10.1016/j.buildenv.2008.04.002. 

[9] S. Gwynne, E.R. Galea, P.J. Lawrence, L. Filippidis, Modelling occupant interaction 

with fire conditions using the building EXODUS evacuation model, Fire Saf. J. 36 
(2001) 327–357, https://doi.org/10.1016/s0379-7112(00)00060-6. 

[10] P.A. Thompson, E.W. Marchant, Testing and application of the computer model 
‘SIMULEX’, Fire Saf. J. 24 (1995) 149–166, https://doi.org/10.1016/0379- 
7112(95)00020-t. 

[11] W. Song, Y. Yu, W. Fan, H. Zhang, An evacuated cellular automaton model con
sidering friction and repulsion, Science in China Series E: Engineering and Materials 
Science 07 (2005) 725–736 http://www.cnki.com.cn/Article/CJFDTOTAL- 
JEXK200507005.htm (Accessed date: 24 November 2019). 

[12] S.R. Musse, D. Thalmann, Hierarchical model for real time simulation of virtual 
human crowds, IEEE Trans. Vis. Comput. Graph. 7 (2001) 152–164, https://doi. 
org/10.1109/2945.928167. 

[13] N. Pelechano, J.M. Allbeck, N.I. Badler, Controlling individual agents in high- 
density crowd simulation, Proceedings of the 2007 ACM SIGGRAPH/Eurographics 
Symposium on Computer Animation, (2007), pp. 99–108, https://repository.upenn. 
edu/hms/210/, Accessed date: 24 November 2019. 

[14] X.S. Pan, Computational modeling of human and social behaviors for emergency 
egress analysis, Stanford University, (2006), pp. 1–127, https://purl.stanford.edu/ 
fk214fw2802, Accessed date: 24 November 2019. 

[15] M.L. Chu, P. Parigi, J.C. Latombe, K.H. Law, SAFEgress: a flexible platform to study 
the effect of human and social behaviors on egress performance, Stanford 
University, (2013), pp. 1–20, https://purl.stanford.edu/tq804kf0988, Accessed 
date: 24 November 2019. 

[16] C. Thornton, R.O. Konski, B. Klein, B. Hardeman, D. Swenson, New wayfinding 
techniques in pathfinder and supporting research, Pedestrian and Evacuation 
Dynamics 2012 (2014) 1315–1322, https://doi.org/10.1007/978-3-319-02447-9_ 
108. 

[17] D.A. Purser, J.L. McAllister, Assessment of hazards to occupants from smoke, toxic 
gases, and heat, SFPE Handbook of Fire Protection Engineering, 5th ed., Springer 
New York, (2016), pp. 2308–2428, doi:https://doi.org/10.1007/978-1-4939-2565- 
0_63. 

[18] K. McGrattan, B. Klein, S. Hostikka, J. Floyd, Fire Dynamics Simulator (Version 5) 
User’s Guide, NIST Special Publication 1019-5, National Institute of Standards and 
Technology. U.S, Department of Commerce, 2007https://nvlpubs.nist.gov/ 
nistpubs/Legacy/SP/nistspecialpublication1019-5.pdf (Accessed date: 24 
November 2019). 

[19] Z.M. Fang, Modelling and experimental study of evacuation process considering the 
effect of fire, University of Science and Technology of China, (2012), pp. 1–99, 
http://cdmd.cnki.com.cn/Article/CDMD-10358-1012503373.htm, Accessed date: 
24 November 2019. 

[20] J. Shi, A. Ren, C. Chen, Agent-based evacuation model of large public buildings 
under fire conditions, Autom. Constr. 18 (2009) 338–347, https://doi.org/10. 
1016/j.autcon.2008.09.009. 

[21] M.L. Chu, K.H. Law, P. Parigi, J.C. Latombe, Simulating individual, group, and 
crowd behaviors in building egress, Simulation 91 (2015) 825–845, https://doi. 
org/10.1177/0037549715605363. 

[22] D.L. Simms, P.L. Hinkley, Protective clothing against flame and heat, Fire Research 
Special Report No. 3, London: Her Majesty's Stationary office, (1959), pp. 1–35, 
http://iafss.org/publications/frn/324/-1/view/frn_324.pdf, Accessed date: 30 May 
2020. 

[23] B.C. Levin, New research avenues in toxicology: 7-gas N-gas model, toxicant sup
pressants, and genetic toxicology, Toxicology 115 (1996) 89–106, https://doi.org/ 
10.1016/S0300-483X(96)03497-X. 

[24] V. Babrauskas, R.G. Gann, B.C. Levin, M. Paabo, R.H. Harris, R.D. Peacock, S. Yusa, 
A methodology for obtaining and using toxic potency data for fire hazard analysis, 
Fire Saf. J. 31 (1998) 345–358, https://doi.org/10.1016/s0379-7112(98)00013-7. 

[25] J.H. Stuhmiller, L.M. Stuhmiller, An internal dose model for interspecies extra
polation of immediate incapacitation risk from inhalation of fire gases, Inhal. 
Toxicol. 14 (2002) 929–957, https://doi.org/10.1080/08958370290084700. 

[26] T. Jin, Visibility through fire smoke (I), Bulletin of Japan Association for Fire 
Science and Engineering, 19 (1970), pp. 1–8, doi:10.11196/kasai.19.2.1. 

[27] T. Jin, T. Yamada, Irritating effects of fire smoke on visibility, Fire Science and 
Technology 5 (1985) 79–90, https://doi.org/10.3210/fst.5.79. 

[28] G. Jensen, Wayfinding in Heavy Smoke: Decisive Factors and Safety Products, 
Findings related to full scale tests, IGP AS, 1998, pp. 1–12 http://hylinesafety.com/ 
images/wayfinding.pdf (Accessed date: 24 November 2019). 

[29] D.J. Rasbash, Sensitivity criteria for detectors used to protect life, In Proceedings of 
the 7th International Seminar on Problems of Automatic Fire Detection, (1975), pp. 
137–154, https://firedoc.nist.gov/article/AV-78yPve8PRSQSQ1Hh_, Accessed 
date: 30 May 2020. 

[30] G.Q. Chu, T. Chen, Z.H. Sun, J.H. Sun, Probabilistic risk assessment for evacuees in 
building fires, Build. Environ. 42 (2007) 1283–1290, https://doi.org/10.1016/j. 
buildenv.2005.12.002. 

[31] X. Pan, C.S. Han, K. Dauber, K.H. Law, Human and social behavior in computational 
modeling and analysis of egress, Autom. Constr. 15 (2006) 448–461, https://doi. 
org/10.1016/j.autcon.2005.06.006. 

[32] L. Valasek, The use of PyroSim graphical user interface for FDS simulation of a 
cinema fire, International Journal of Mathematics and Computers in Simulation 7 
(2013) 258–266 https://pdfs.semanticscholar.org/999d/ 
7673212edbe7fa685f6623f806d156e10293.pdf (Accessed date: 24 November 
2019). 

[33] FDS and Smokeview, https://www.nist.gov/services-resources/software/fds-and- 
smokeview, (2017) (Accessed date: 24 November 2019). 

[34] P.A. Thompson, J. Wu, E.W. Marchant, Simulex 3.0: modelling evacuation in multi- 
storey buildings. Fire Safety Science, 5 (1997), pp. 725–736, doi:https://doi.org/ 
10.3801/IAFSS.FSS.5-725. 

Z. Li, et al.   Automation in Construction 120 (2020) 103395

19

https://doi.org/10.1016/j.autcon.2020.103395
https://doi.org/10.1016/j.autcon.2020.103395
https://www.nfpa.org//-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/osFireLoss.pdf
https://www.nfpa.org//-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/osFireLoss.pdf
https://doi.org/10.1016/j.autcon.2019.01.007
https://doi.org/10.1016/j.autcon.2013.10.022
https://doi.org/10.1016/j.autcon.2013.10.022
https://doi.org/10.1007/s00146-007-0126-1
https://doi.org/10.1061/41182(416)67
https://doi.org/10.1038/35035023
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/192606/understanding_crowd_behaviour-supporting-evidence.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/192606/understanding_crowd_behaviour-supporting-evidence.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/192606/understanding_crowd_behaviour-supporting-evidence.pdf
https://doi.org/10.1016/j.buildenv.2008.04.002
https://doi.org/10.1016/j.buildenv.2008.04.002
https://doi.org/10.1016/s0379-7112(00)00060-6
https://doi.org/10.1016/0379-7112(95)00020-t
https://doi.org/10.1016/0379-7112(95)00020-t
http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200507005.htm
http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200507005.htm
https://doi.org/10.1109/2945.928167
https://doi.org/10.1109/2945.928167
https://repository.upenn.edu/hms/210/
https://repository.upenn.edu/hms/210/
https://purl.stanford.edu/fk214fw2802
https://purl.stanford.edu/fk214fw2802
https://purl.stanford.edu/tq804kf0988
https://doi.org/10.1007/978-3-319-02447-9_108
https://doi.org/10.1007/978-3-319-02447-9_108
https://doi.org/10.1007/978-1-4939-2565-0_63
https://doi.org/10.1007/978-1-4939-2565-0_63
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1019-5.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1019-5.pdf
http://cdmd.cnki.com.cn/Article/CDMD-10358-1012503373.htm
https://doi.org/10.1016/j.autcon.2008.09.009
https://doi.org/10.1016/j.autcon.2008.09.009
https://doi.org/10.1177/0037549715605363
https://doi.org/10.1177/0037549715605363
http://iafss.org/publications/frn/324/-1/view/frn_324.pdf
https://doi.org/10.1016/S0300-483X(96)03497-X
https://doi.org/10.1016/S0300-483X(96)03497-X
https://doi.org/10.1016/s0379-7112(98)00013-7
https://doi.org/10.1080/08958370290084700
https://doi.org/10.11196/kasai.19.2.1
https://doi.org/10.3210/fst.5.79
http://hylinesafety.com/images/wayfinding.pdf
http://hylinesafety.com/images/wayfinding.pdf
https://firedoc.nist.gov/article/AV-78yPve8PRSQSQ1Hh_
https://doi.org/10.1016/j.buildenv.2005.12.002
https://doi.org/10.1016/j.buildenv.2005.12.002
https://doi.org/10.1016/j.autcon.2005.06.006
https://doi.org/10.1016/j.autcon.2005.06.006
https://pdfs.semanticscholar.org/999d/7673212edbe7fa685f6623f806d156e10293.pdf
https://pdfs.semanticscholar.org/999d/7673212edbe7fa685f6623f806d156e10293.pdf
https://www.nist.gov/services-resources/software/fds-and-smokeview
https://www.nist.gov/services-resources/software/fds-and-smokeview
https://doi.org/10.3801/IAFSS.FSS.5-725
https://doi.org/10.3801/IAFSS.FSS.5-725


[35] I. Donald, D. Canter, Intentionality and fatality during the King’s Cross underground 
fire, Eur. J. Soc. Psychol. 22 (1992) 203–218, https://doi.org/10.1002/ejsp. 
2420220302. 

[36] A.R. Mawson, Understanding mass panic and other collective responses to threat 
and disaster, Psychiatry: Interpersonal and Biological Processes 68 (2005) 95–113, 
https://doi.org/10.1521/psyc.2005.68.2.95. 

[37] E.D. Kuligowski, Terror defeated: occupant sensemaking, decision-making and 
protective action in the 2001 World Trade Center disaster, University of Colorado 
Boulder, (2011), pp. 1–205, https://scholar.colorado.edu/concern/graduate_thesis_ 
or_dissertations/6t053g11g, Accessed date: 30 May 2020. 

[38] D. Tong, D. Canter, The decision to evacuate: a study of the motivations which 
contribute to evacuation in the event of fire, Fire Saf. J. 9 (1985) 257–265, https:// 
doi.org/10.1016/0379-7112(85)90036-0. 

[39] B.E. Aguirre, M.R. Torres, K.B. Gill, H.L. Hotchkiss, Normative collective behavior 
in the station building fire, Soc. Sci. Q. 92 (2011) 100–118, https://doi.org/10. 
1111/j.1540-6237.2011.00759.x. 

[40] B.E. Aguirre, D. Wenger, G. Vigo, Test of the emergent norm theory of collective 
behavior, Sociol. Forum 13 (1998) 301–320, https://doi.org/10.1023/ 
a:1022145900928. 

[41] M.J. O’Neill, Effects of signage and floor plan configuration on wayfinding accu
racy, Environ. Behav. 23 (1991) 553–574, https://doi.org/10.1177/ 
0013916591235002. 

[42] J.R. Hall, How many people can be saved from home fires if given more time to 
escape? Fire. Technol 40 (2004) 117–126, https://doi.org/10.1023/B:FIRE. 
0000016839.11376.b3. 

[43] R.F. Fahy, G. Proulx, Toward creating a database on delay times to start evacuation 
and walking speeds for use in evacuation modeling. In 2nd International 
Symposium on Human Behaviour in Fire, (2001), pp. 175–183, https://nrc- 
publications.canada.ca/eng/view/accepted/?id=4fef7a5e-f184-408a-b11f- 
3ffbf2a61ddf, Accessed date: 30 May 2020. 

[44] M.L. Chu, A computational framework incorporating human and social behaviors 
for occupant-centric egress simulation, Stanford University, (2015), pp. 1–156, 
https://purl.stanford.edu/jw835rf0798, Accessed date: 24 November 2019. 

[45] E.D. Kuligowski, Modeling Human Behavior During Building Fire, NIST Technical 
Note 1619, National Institute of Standards and Technology. U.S, Department of 
Commerce, 2008http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462. 
3209&rep=rep1&type=pdf (Accessed date: 24 November 2019). 

[46] M.K. Lindell, R.W. Perry, The protective action decision model: theoretical mod
ifications and additional evidence, Risk Anal. 32 (2012) 616–632, https://doi.org/ 
10.1111/j.1539-6924.2011.01647.x. 

[47] A. Turner, A. Penn, Encoding natural movement as an agent-based system: an in
vestigation into human pedestrian behaviour in the built environment, 

Environment and Planning B: Planning and Design 29 (2002) 473–490, https://doi. 
org/10.1068/b12850. 

[48] H.H. González-Baños, J.C. Latombe, Navigation strategies for exploring indoor 
environments, The International Journal of Robotics Research 21 (2002) 829–848, 
https://doi.org/10.1177/0278364902021010834. 

[49] R. Challenger, C.W. Clegg, M.A. Robinson, Understanding crowd behaviours: gui
dance and lessons identified, London: the Cabinet Office, (2009), https://assets. 
publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/ 
file/62638/guidancelessons1_0.pdf, Accessed date: 24 November 2019, (ISBN 978- 
1-874321-20-0). 

[50] B.E. Aguirre, Emergency evacuations, panic, and social psychology, Psychiatry: 
Interpersonal and Biological Processes 68 (2005) 121–129, https://doi.org/10. 
1521/psyc.2005.68.2.121. 

[51] Autodesk Corporation, Autodesk CAD Software, https://www.autodesk.com/ 
solutions/cad-software, (2018). 

[52] R.J. Roux, B.D. Chase, C.D. Coache, NFPA 72: National Fire Alarm and Signaling 
Code Handbook, National Fire Protection Association, (2019), https://catalog.nfpa. 
org/NFPA-72-National-Fire-Alarm-and-Signaling-Code-Handbook-P15539.aspx? 
icid=D535, Accessed date: 30 May 2020, (ISBN 978-1455920563). 

[53] British Standards Institution, Fire safety engineering in buildings - guide to the 
application of fire safety engineering principles, https://infostore.saiglobal.com/en- 
au/Standards/BS-DD240-1-1997-1997-222061_SAIG_BSI_BSI_522127/, (1997) 
(Accessed date: 30 May 2020). 

[54] E.D. Kuligowski, D.S. Mileti, Modeling pre-evacuation delay by occupants in World 
Trade Center Towers 1 and 2 on September 11, 2001, Fire Saf. J. 44 (2009) 
487–496, https://doi.org/10.1016/j.firesaf.2008.10.001. 

[55] C.M. Zhao, S.M. Lo, S.P. Zhang, M. Liu, A post-fire survey on the pre-evacuation 
human behavior, Fire. Technol 45 (2009) 71–95, https://doi.org/10.1007/s10694- 
007-0040-6. 

[56] E. Ronchi, E.D. Kuligowski, P.A. Reneke, R.D. Peacock, D. Nilsson, The Process of 
Verification and Validation of Building Fire Evacuation Models, NIST Technical 
Note 1822, National Institute of Standards and Technology. U.S. Department of 
Commerce, (2013), doi:https://doi.org/10.6028/NIST.TN.1822, Accessed date: 30 
May 2020. 

[57] E.R. Galea, S. Deere, L. Filippidis, R. Brown, I. Nicholls, Y. Hifi, N. Besnard, The 
Safeguard validation data-set and recommendations to IMO to update MSC Circ 
1238, Safeguard Passenger Evacuation Seminar, (2012), pp. 41–60. http://www. 
cedomare.com/wp-content/uploads/2018/05/RINA-SAFEGUARD-Seminar2.pdf# 
page=43, Accessed date: 30 May 2020. 

[58] International Maritime Organization, Guidelines for evacuation analysis for new 
and existing passenger ships, https://nsof.no/media/1129/imo-msc-guidelines-for- 
evacuation-etc.pdf, (2007) (Accessed date: 30 May 2020).  

Z. Li, et al.   Automation in Construction 120 (2020) 103395

20

https://doi.org/10.1002/ejsp.2420220302
https://doi.org/10.1002/ejsp.2420220302
https://doi.org/10.1521/psyc.2005.68.2.95
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/6t053g11g
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/6t053g11g
https://doi.org/10.1016/0379-7112(85)90036-0
https://doi.org/10.1016/0379-7112(85)90036-0
https://doi.org/10.1111/j.1540-6237.2011.00759.x
https://doi.org/10.1111/j.1540-6237.2011.00759.x
https://doi.org/10.1023/a:1022145900928
https://doi.org/10.1023/a:1022145900928
https://doi.org/10.1177/0013916591235002
https://doi.org/10.1177/0013916591235002
https://doi.org/10.1023/B:FIRE.0000016839.11376.b3
https://doi.org/10.1023/B:FIRE.0000016839.11376.b3
https://nrc-publications.canada.ca/eng/view/accepted/?id=4fef7a5e-f184-408a-b11f-3ffbf2a61ddf
https://nrc-publications.canada.ca/eng/view/accepted/?id=4fef7a5e-f184-408a-b11f-3ffbf2a61ddf
https://nrc-publications.canada.ca/eng/view/accepted/?id=4fef7a5e-f184-408a-b11f-3ffbf2a61ddf
https://purl.stanford.edu/jw835rf0798
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.3209&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.3209&rep=rep1&type=pdf
https://doi.org/10.1111/j.1539-6924.2011.01647.x
https://doi.org/10.1111/j.1539-6924.2011.01647.x
https://doi.org/10.1068/b12850
https://doi.org/10.1068/b12850
https://doi.org/10.1177/0278364902021010834
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/62638/guidancelessons1_0.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/62638/guidancelessons1_0.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/62638/guidancelessons1_0.pdf
https://doi.org/10.1521/psyc.2005.68.2.121
https://doi.org/10.1521/psyc.2005.68.2.121
https://www.autodesk.com/solutions/cad-software
https://www.autodesk.com/solutions/cad-software
https://catalog.nfpa.org/NFPA-72-National-Fire-Alarm-and-Signaling-Code-Handbook-P15539.aspx?icid=D535
https://catalog.nfpa.org/NFPA-72-National-Fire-Alarm-and-Signaling-Code-Handbook-P15539.aspx?icid=D535
https://catalog.nfpa.org/NFPA-72-National-Fire-Alarm-and-Signaling-Code-Handbook-P15539.aspx?icid=D535
https://infostore.saiglobal.com/en-au/Standards/BS-DD240-1-1997-1997-222061_SAIG_BSI_BSI_522127/
https://infostore.saiglobal.com/en-au/Standards/BS-DD240-1-1997-1997-222061_SAIG_BSI_BSI_522127/
https://doi.org/10.1016/j.firesaf.2008.10.001
https://doi.org/10.1007/s10694-007-0040-6
https://doi.org/10.1007/s10694-007-0040-6
https://doi.org/10.6028/NIST.TN.1822
http://www.cedomare.com/wp-content/uploads/2018/05/RINA-SAFEGUARD-Seminar2.pdf#page=43
http://www.cedomare.com/wp-content/uploads/2018/05/RINA-SAFEGUARD-Seminar2.pdf#page=43
http://www.cedomare.com/wp-content/uploads/2018/05/RINA-SAFEGUARD-Seminar2.pdf#page=43
https://nsof.no/media/1129/imo-msc-guidelines-for-evacuation-etc.pdf
https://nsof.no/media/1129/imo-msc-guidelines-for-evacuation-etc.pdf

	An agent-based simulator for indoor crowd evacuation considering fire impacts
	1 Introduction
	2 Fire impact on evacuees
	3 FREEgress
	3.1 System architecture
	3.2 Representation of the spatial environment
	3.3 Simulation of fire hazards and emergency cues
	3.4 Agent representation of evacuees
	3.5 Modeling of fire impacts on evacuees' physiology
	3.5.1 Fire impacts on motion speed
	3.5.2 Fire impacts on health

	3.6 Modeling of fire impacts on evacuees' navigation strategy
	3.7 Synchronous visualization of fire spread and evacuation

	4 Model verification methodology
	4.1 Verification rules
	4.2 Scenario descriptions and simulation settings

	5 Model verification results
	5.1 Comparison between FREEgress and SAFEgress
	5.2 Comparison between FREEgress and FDS + Evac

	6 Case study
	6.1 The impact of initial fire location
	6.2 The impact of delay time
	6.3 The impact of behavior type
	6.4 Discussions

	7 Conclusions and future research
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References




