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A B S T R A C T   

Understanding the patterns of urban human mobility has played an important role in multiple 
disciplines such as urban planning, transportation engineering and social sciences. Due to its rich 
connotations related to urban regions, the extreme weather events (EWEs)-induced perturbation 
of human mobility has been studied to capture the multifaceted influences of EWEs on cities. 
While this issue has drawn increasing attention, there is still limited understanding of EWE- 
induced mobility perturbation at the individual level. To address this need, a new analytical 
framework for individual mobility perturbation is proposed in this study. The framework assesses 
individual mobility perturbation during EWEs by taking various facets of spatial and temporal 
features into consideration, and examines the individual variation of such perturbation. To 
demonstrate the efficiency of the proposed framework, two consecutive typhoon events that 
influenced the city of Guangzhou, China in summer 2017 were examined as a case study. It was 
found that individuals in the city experienced notable decreases in the number of visited loca
tions, visitation frequency and movement range, increases in waiting time, and changes in 
movement status pattern under these two EWEs. Moreover, mobility perturbation showed sig
nificant variation among individuals, and such variation was linked to individuals’ demographic 
attributes, home location and travel preference. Meanwhile, four types of responses to EWE 
impacts were extracted from the population. The findings in this study contribute to a manifold 
understanding of EWE-induced individual mobility perturbations, and have potential to be 
transformed into actionable measures in urban EWE risk reduction and management practices.   

1. Introduction 

The world has witnessed increasing frequency and intensity of extreme weather events (EWEs) in the past decades [1,2], which 
have imposed significant threats to cities worldwide. This has inspired an increasing amount of researches on assessing EWE-induced 
impacts on cities, in terms of e.g. building and infrastructure damages [3], economic losses [4] and community disruptions [5], and 
developing solutions to enhance cities’ adaptation and resilience [6,7]. More recently, urban human mobility has provided a new 
insight to study EWE-induced impacts on cities. Urban human mobility is the interactions between individuals and physical settings in 
the city [8]. Urban form [9], transportation infrastructure [10] and the distribution of hotspots in the city [11] shape urban human 
mobility. Meanwhile, mobility is also the way individuals access various resources and opportunities in the city [12]. The job op
portunities and jobs-housing relationship determine people’s commuting behavior and the travel flow of residents in the city [13,14]. 
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According to this view, human mobility perturbation, which is considered as the disturbed spatial-temporal characteristics in human 
mobility [15–17], has been regarded as an indicator to extract and understand the failure of urban infrastructure system, the anomaly 
of socio-economic activities and the change of people’s behavioral patterns under EWEs. Therefore, researchers have looked into the 
EWE-induced human mobility perturbation in urban regions to capture the multifaceted influences of EWEs in urban regions. 

Prior studies that investigated human mobility perturbations caused by EWEs or other types of extreme events mostly focused on 
perturbations at the population level. A number of metrics, such as total displacement [15], population transitions [18], relative total 
distance and accumulated perturbation [16], were introduced in prior research to quantify and analyze the overall mobility pertur
bation in a region. Different from mobility perturbation at the population level, individual mobility perturbation refers to the disturbed 
spatial-temporal characteristics of each individual’s mobility during EWEs, which reflects the changes in individual’s travel intention, 
travel preference and mobility pattern. Uncovering mobility perturbation at the individual level helps with demonstrating how in
dividuals react and change their travel behaviors under the impact of EWEs, which in turn explains the perturbations of aggravated 
mobility. Besides, while making evacuation plans, pre-EWE preparations and crisis response strategies, city managers sometimes 
concern special groups, e.g. vulnerable individuals and people living within evacuation zones, rather than the entire population. 
Analyses of individual mobility perturbation contribute to identifying vulnerable individuals and exploring individual variations of 
mobility perturbation. Despite its critical roles, existing understanding of individual mobility perturbation is still limited. 

More specifically, the above gap is twofold. First, while a few studies have attempted to assess individual mobility perturbations 
[15,19,20], they mainly relied on qualitative analysis and only considered limited characteristics of individual mobility. However, 
human mobility is characterized with various spatial and temporal features, such as visited locations, movement range, waiting time 
and movement status, whose patterns cannot be integrally described by a single indicator. This calls for consideration of various facets 
of mobility characteristics when quantifying individual mobility perturbation, which has largely remained underexplored in the 
existing literature. Further adding to the need of considering multiple characteristics in the analysis of individual mobility perturbation 
is the fact that it would provide a chance for cross-validation between different patterns, which is important for providing a manifold 
understanding of people’s reactions to EWEs and supporting accurate prediction of people’s movement under the influence of EWEs. 

Second, prior studies have found that the influence of EWEs on human mobility is highly diverse among individuals [21], and that 
various factors, such as gender, financial situation and normal mobility pattern, may have contributed to such diversity [20,22]. 
However, the individual variation of mobility perturbation has largely remained to be explored. By studying the correlations between 
individuals’ characteristics and their mobility perturbations, the underlying factors that influence individual mobility perturbation 
during EWEs could be revealed. These key factors might help answer why people’s mobility patterns change during EWEs and what 
cause the variation in individual mobility perturbation, which would have significant implications for urban disaster risk reduction 
practices that involve e.g. traffic management and emergency response resources allocation. 

To address the above knowledge gap, this study aims to propose an analytical framework for quantifying individual mobility 
perturbation with various spatial and temporal features and investigating the individual variation of such perturbation. This frame
work consists of three modules. First, a series of metrics are introduced for characterizing individual mobility patterns in terms of 
visited locations, movement range, waiting time and movement status. Then, based on these metrics, the framework incorporates 
methods for analyzing, both qualitatively and quantitatively, whether and to what extent individual mobility patterns are affected by 
EWEs. Finally, the framework addresses the key factors accounting for individual variations of mobility perturbation, by examining the 
correlations between individuals’ characteristics and their mobility perturbations. Then, individuals are clustered into several groups 
based on their different types of responses to EWEs in terms of the mobility perturbation. Typhoon Hato and Typoon Pakhar, two 
consecutive EWEs that influenced the city of Guangzhou, China in a single week, are examined as a case study. The findings in this 
study are expected to contribute to the existing body of knowledge about EWE-induced mobility perturbation, and provide city 
managers with new insights that would allow them to make more informed decisions for enhanced resilience of cities against EWEs 
impact. 

2. Literature review 

2.1. Metrics for characterizing individual mobility patterns 

The mobility trajectories of an individual, which can be described as a time-stamped consecutive sequence of locations the indi
vidual visits [23], have a high degree of spatial and temporal regularity [24,25]. This suggests that, to comprehensively characterize 
individual mobility patterns, both spatial and temporal characteristics should be considered. 

Accordingly, a variety of metrics have been introduced in prior research to describe the spatial and temporal characteristics of 
human mobility. Among those that focus on individual mobility patterns, the metrics of travel length and waiting time [26] are the 
most fundamental ones. Providing basic information about every trip made by an individual, these two metrics form the cornerstone of 
early models of individual mobility, such as the well-known continuous time random walks (CTRW) model [27]. Beyond separated 
trips, prior research also investigated the characteristics of individuals’ trajectories that comprise a sequence of trips, for which a few 
metrics, such as the number of visited locations and visitation frequency [28], were introduced. In addition, the spatial distribution of 
visited locations is also important, especially for understanding the diffusive process of individual mobility. To quantify this char
acteristic, González et al. adopted a time-independent characteristic travel distance termed radius of gyration to describe the indi
vidual movement range [24]. Furthermore, individuals were found to have a tendency of returning to a few frequently visited locations 
[24,29], which has motivated a few metrics that are used to describe individuals’ recurrent mobility pattern and its impact on in
dividuals’ overall mobility patterns. These metrics include: (1) k-radius of gyration (the radius of gyration computed over top k most 
frequently visited locations) [29], (2) k-visitation frequency (visitation frequency to the kth most frequently visited locations) [30], (3) 
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k-waiting time (waiting time in the kth most frequently visited locations) [31], and (4) return time (inter-event time between two 
consecutive visits to the same visited location) [32]. More recently, with the increasing use of complex network approaches in urban 
mobility analysis, network-based metrics, such as average degree and average path length [33], have also been introduced to assess the 
topological characteristics of mobility networks that are extracted from individuals’ trajectories. 

2.2. Influence of EWEs on urban human mobility 

Prior studies have reported that EWEs would cause short-term perturbations to urban mobility and, in extreme cases, lead to long- 
term immigration [16,22]. A number of studies have investigated the influences of EWEs on urban mobility at the population level and 
revealed that the intensity of human mobility and the travel flow of urban population perturbed during EWEs [16,34]. 

Meanwhile, there is relatively a scarcity of research that assessed the mobility perturbation at the individual level. Among the few 
researchers that have looked into this problem, Wang et al. discovered that the statistical properties of individuals’ radius of gyration 
would be notably perturbed under the influence of severe winter storms [19]. They also found that, affected by Hurricane Sandy, the 
number of long-distance trips by people in New York City decreased while the number of short-distance trips increased [15]. In another 
study, the impact of EWEs on individual human mobility was assessed based on the shifting distance of the center of mass of in
dividuals’ trajectories [20]. In addition, although individual mobility tends to have a high degree of regularity characterized by a few 
highly frequented locations [24,29], such regularity was found to be weaker during EWEs [19]. Findings in the above studies proved 
the significance of individual mobility perturbation during EWEs. However, these analyses and findings were mainly qualitative, and 
there still lacks an effective approach for assessing the magnitude of such perturbation. Moreover, prior studies examined individual 
mobility perturbation only through changes in travel length, radius of gyration and center of mass, while other important charac
teristics, such as the number of visited locations, visitation frequency, waiting time and movement status, were largely neglected. 

Another important knowledge gap in literature is related to the understanding of key factors influencing EWE-induced individual 
mobility perturbation. The individual mobility perturbation is highly diverse among different individuals [20,22,33]. Yet, the un
derlying reasons for such diversity have remained underexplored. According to prior studies, the diversity of individual mobility 
perturbation could be possibly attributed to the following factors. First, demographic attributes, such as age, gender, occupation, race 
and class, are believed to have impact on people’s reactions to changing environment as well as their mobility perturbations [35,36]. 
For instance, it was discovered that long-term immigration caused by flooding and crop failures was visibly more intense for women 
and the poor [22]. Second, it has been discovered that home location, which represents one’s primary habitat [37], correlates with 
mobility patterns. The variations of population density, infrastructure development, job opportunity and land use around people’s 
primary habitats result in the diversity of individual mobility patterns [38]. Besides, the intensity of EWE-induced impact and its 
recovery also differ across regions in a city [39]. Therefore, during EWEs, people who live in different places will be affected by the 
EWE-induced infrastructure failure and service disruptions differently [40,41], which likely contributes to the individual variation of 
mobility perturbation. Third, people’s mobility perturbation is correlated with their mobility pattern in steady states. For instance, 
Wang et al. noticed that individuals with more recurrent locations showed a higher correlation between recurrent mobility and 
perturbed mobility [19], which suggested that their mobility patterns during abnormal times were more predictable. In addition, the 

Fig. 1. The analytical framework for individual mobility perturbation.  
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shifting distance of center of mass was also found to be positively correlated with the radius of gyration in steady states [20]. Despite 
the above sporadic studies, the individual variation of mobility perturbation has largely remained to be explored. 

In summary, a line of researches have confirmed the impact of EWEs on individual mobility and have qualitatively described 
individual mobility perturbation in terms of travel length, center of mass and regularity. Besides, researchers have also pointed out the 
individual variation of mobility perturbation and put forward a series of impact factors of individual mobility perturbation. Based on 
the existing literature, this study aims to develop an effective framework for quantitatively assessing the magnitude of individual 
mobility perturbation from a more comprehensive perspective that takes a wide range of spatial-temporal characteristics, e.g., the 
number of visited locations, visitation frequency, waiting time and movement status, into consideration. The framework proposed in 
this study is expected to replenish the currently limited understanding of the impact of EWEs on individual mobility patterns and its 
implications for EWE-induced impact assessment and urban resilience enhancement. Moreover, this study also aims to address the 
individual variation of EWE-induced mobility perturbation. On the one hand, this study identified impact factors of individual mobility 
perturbation and analyze the correlation between individuals’ characteristics and their mobility perturbations, which would explain 
why people’s mobility patterns change during EWEs and identify the main causes of the variation in individual mobility perturbation. 
On the other hand, this study clustered individuals into groups according to their mobility perturbation. By doing so, several groups of 
individuals with different responses to EWEs were finally extracted, which contributed to better understanding about the variation of 
individual mobility perturbation. 

3. Analytical framework for individual mobility perturbation 

In order to characterize EWE-induced individual mobility perturbation, an analytical framework is proposed in this study. It 
consists of three modules, as illustrated in Fig. 1. In the first module, a number of metrics are selected to describe individual mobility 
patterns from various aspects including visited locations, movement range, waiting time and movement status. For the second module, 
a series of metrics are developed to quantify and analyze individual mobility perturbation under EWEs. Lastly, this framework focuses 
on exploring the individual variation of mobility perturbations. Key factors contributing to individual variation of mobility pertur
bations are identified by incorporating methods for analyzing the correlations between individuals’ characteristics, described by their 
demographic attributes, home location and travel preference, and their mobility perturbations. Then, the k-means clustering algorithm 
is adopted to cluster individuals into several groups based on their mobility perturbations. Each group corresponds to a different 
pattern of responses to the impact of EWEs. Details of the proposed framework are further explained in the remainder of this section. 

3.1. Characterizing individual mobility patterns 

As aforementioned, individual mobility trajectories possess a high degree of temporal and spatial regularity [24,25]. Therefore, to 
characterize individual mobility patterns integrally, both spatial and temporal characteristics are considered in this study. 

The spatial characteristics of individual mobility can be reflected by the number, visitation frequency and spatial distribution of 
visited locations. Accordingly, the following metrics are selected: (1) the number of visited locations (l) and the visitation frequency of 
all visited locations (ft) [28] are used to characterize the overall spatial mobility pattern; (2) the visitation frequencies of the top 1, top 
2 and top 5 most frequently visited locations (f1, f2 and f5) are used to characterize the recurrent spatial mobility pattern [30]; and (3) 
the radius of gyration (Rg) is used to quantify the movement range, which describes the spatial distribution of visited locations [24]. Rg 
can be calculated based on Eqs. (1) and (2): 

Rg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ft

∑l

i=1
ni(ri − rc)

2

√
√
√
√ (1)  

rc =
1
ft

∑l

i=1
ni*ri (2)  

where ft is the visitation frequency of all visited locations, ni is the visitation frequency of visited location i, ri is the position vector of 
visited location i, and rc is the center of mass of mobility trajectory. 

On the other hand, the temporal characteristics of individual mobility can be reflected by the allocation of waiting time among all 
visited locations as well as the travel schedule. The former one characterizes how many times an individual visits each place and how 
long he/she stays there, while the latter characterizes when an individual tends to stay at each place or move between places. 
Accordingly, the following metrics are selected: (1) the total waiting time (tt) is used to characterize the overall temporal mobility 
pattern [26,31]; (2) the waiting time at home and at the top 1, top 2 and top 5 most frequently visited locations (th, t1, t2 and t5) is used 
to characterize the recurrent temporal mobility pattern [31,42]; and (3) a new metric (ST) is introduced to describe one’s daily 
movement status in the time period T. Specifically, one’s movement status throughout day i can be characterized by a time series Si, 
which can be calculated based on Eq. (3): 

Si =
[
si,0, si,1,…, si,n,…, si,47

]
, si,n = 0 or 1 (3) 
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where si,n stands for one’s movement status in the n-th half hour in day i. is a binary variable, with value 0 representing static status, 
indicating the individual spends majority of this half hour staying at certain locations, and value 1 representing movement status, 
indicating otherwise. 

Based on Si , one’s daily movement status over time period T with a duration of k days, denoted asST, can be calculated based on Eq. 
(4) and Eq. (5): 

ST =
[
sT,0, sT,1,…, sT,n,…, sT,47

]
(4)  

where sT,n denotes the one’s daily movement status in the n-th half hour over time period T: 

sT,n =
(
s1, n + s2,n +…+ sk,n

)/
k (5) 

In summary, a total of 12 metrics are selected to describe individual mobility patterns in terms of visited locations, movement 
range, waiting time and movement status. These metrics are summarized in Table 1. 

3.2. Assessing individual mobility perturbations 

For metrics in Table 1, the average value of each metric in EWE-free days can be calculated to represent individual mobility patterns 
in normal state, while that in EWE-influenced days reflects perturbed individual mobility patterns. Therefore, for each metric, by 
comparing its distribution and mean value among all individuals between normal state and perturbed state, whether the individual 
mobility pattern as reflected by this metric is perturbed during EWE can be determined. For this purpose, specifically, the Kolmogorov- 
Smirnov (KS) two-sample test [43] can be conducted to examine whether the distribution of each metric during EWE differs from that 
in normal time, and the Wilcoxon rank-sum test [44] can be conducted to examine whether the mean value of each metric changes 
during EWE. 

If individual mobility perturbations are found to be statistically significant, a series of metrics are developed in the proposed 
framework for quantifying the magnitude of the perturbations. The change rates of all metrics introduced in Table 1, except metric ST , 
can be calculated to quantify the perturbation in visited locations, movement range and waiting time. Specifically, for any metric M, its 
change rate rM is calculated based on the following equation: 

rM =
MEWE − Mnormal

MEWE + Mnormal
× 100% (6)  

where MEWE represents the value of metric M during EWEs and Mnormal represents the value of metric M in normal time. This change 
rate ranges from − 100% to 100%, and a negative value represents a decrease of the metric during EWEs. 

As for metric ST, the dynamic time warping (DTW) algorithm [45] is applied to quantify the similarity between ST values in normal 
time (Snormal) and during EWE (SEWE) based on Eq. (7). DTW algorithm was initially proposed to find an optimal match between two 
given time series with a high tolerance of outliers [45,46]. According to DTW algorithm, to compare SEWE with Snormal, the first step is to 
construct a 48*48 DTW grid. The value of each grid cell represents the distance between corresponding elements in the two time series 
(here the absolute value of difference between corresponding elements is used). The next step is to find a path through the grid which 
minimizes the total distance. The minimized total distance is called the DTW distance between Snormal and SEWE, which is denoted as 
DTW(SEWE,Snormal). The DTW(SEWE, Snormal) value is further divided by 48 for normalization purpose, and the resulting variable distDTW 
has a value that ranges from 0 to 1: 

distDTW =
DTW(SEWE, Snormal)

48
(7)  

where distDTW measures the perturbation of one’s movement status, and a larger value of distDTW indicates a greater perturbation in 

Table 1 
Metrics used to characterize individual mobility pattern.   

Metrics Definition 

Visited 
Location 

L The number of visited locations 
ft The visitation frequency to all locations 
f1 The visitation frequency to the most frequently visited location 
f2 The visitation frequency to the two most frequently visited locations 
f5 The visitation frequency to the five most frequently visited locations 

Movement 
Range 

Rg The weighted average distance of all visiting locations to mobility center 

Waiting 
Time 

tt The waiting time in all locations 
th The waiting time at home 
t1 The waiting time in the most frequently visited location 
t2 The waiting time in the two most frequently visited locations 
t5 The waiting time in the five most frequently visited locations 

Movement 
Status 

ST  The daily movement status during time period T  
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movement status. 

3.3. Analyzing individual variation of mobility perturbations 

3.3.1. Individual characteristics 
In this proposed framework, individual characteristics are represented by demographic attributes, home location and travel 

preference, which are considered as three main factors influencing EWE-induced individual mobility perturbation in prior research. To 
measure these factors, the following variables are selected: (1) for demographic attributes, individuals can be classified based on 
gender and age group; (2) with respect to home location, it can be measured by two variables, namely the distance between one’s home 
location and the central business district (CBD) of the city (distance_to_cbd), and the distance between the home location and the tracks 
of typhoon (distance_to_typhoon). distance_to_cbd reflects the variation of population density and infrastructure services in different 
regions in a city, and distance_to_typhoon reflects the variation of impact intensity of typhoon events; (3) as for travel preference, it can 
be measured by people’s preference to return to places they have visited before [29] and their preference to visit distant places. 
Specifically, it is discovered that people with different preferences to return already-visited places possess highly different mobility 
patterns. Based on such preference differences, people can be divided into explorers and returners [29,47]. Following the classification 
method introduced by Pappalardo et al. [29], the ratio of Rg2 (Eq. (8) and (9)) to Rg (Eq. (1)), denoted as s2, can be calculated for each 
individual. Those with s2 larger than 0.5 are classified as returners or otherwise as explorers. Meanwhile, weekly radius of gyration 
(Rg) in normal time, which describes individuals’ movement range, can be used to assess their preference for distant places. 

R2
g =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
f2

∑2

i=1
fi
(
ri − r2

c

)2

√
√
√
√ (8)  

r2
c =

1
f2

∑2

i=1
fi*ri (9)  

3.3.2. Relationship between individual’s characteristics and mobility perturbation 
The proposed analytical framework uses the multiple linear regression [48], a widely used statistical modeling method, to study the 

relationship between people’s characteristics and their mobility perturbations. In the regression model, categorical variables and 
numerical variables that describe people’s characteristics are treated as independent variables, and the metrics introduced in Section 
3.2 that quantify individual mobility perturbations are treated as dependent variables. As such, there are a total of 12 dependent 
variables in the model. If there are strong correlations between some of the dependent variables, factor analysis, which is a commonly 
adopted method for reducing the number of variables into fewer independent latent variables [49], should be conducted. To analyze 
the correlation between these variables and test whether factor analysis should be used, the Kaiser-Meyer-Olkin measure [50] and 
Bartlett’s sphericity test [51] can be conducted on the 12 dependent variables. 

3.3.3. Clustering individuals with different responses to EWEs 
K-means clustering algorithm, a classic unsupervised learning method, is adopted to cluster individuals into groups with different 

responses to EWEs [52]. K-means cluster algorithm aims to find the cluster centers such that the sum of squared distance, defined as 
distortion, of each data point to its nearest cluster center is minimized. The distortion could be calculated based on Eq. (10): 

distortion=
∑n

i=1

⎡

⎣ min⏟⏞⏞⏟
k=1,2, …,K

d(xi, ck)

⎤

⎦ (10)  

where K is the number of clusters, ck is the center of cluster k, d represents the distance function which is chosen as the Euclidean 
distance in this study. 

Here, individuals are clustered based on their mobility perturbation, which is characterized by a multidimensional variable 
(namely xi in Eq. (10)) composed of the factors extracted in Section 3.3.2. The approach known as the “Elbow method” is adopted to 
determine the number of clusters k [53]. Specifically, k-means clustering method is run for k from 1 to 10 and then the value of 
distortion could be computed for each value of k. According to the Elbow method, the proper number of clusters could be determined 
based on the relationship between distortion and the number of clusters. Given the chosen k, individuals could be clustered into k 
groups with different characteristics of individual mobility perturbation accordingly. 

4. Case and data 

The proposed framework is demonstrated using a case study. The background of the case and details of the studied mobility data are 
explained in this section. The results of the case study are presented and discussed in the following sections. 

4.1. Data descriptions 

This work studied individual mobility perturbation in Guangzhou, China, under the impact of two consecutive typhoon events in 
summer 2017. Guangzhou is a highly-developed subtropical coastal city with dense population and suffers from typhoons and hur
ricanes at a high frequency every year. Considering its urban form as well as its urban development and management levels, 
Guangzhou is one of the most representative coastal cities in southern China. Moreover, the studied case is of notable 
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representativeness for other highly-developed cities around the world that have dense urban population and are faced with similar 
typhoon or hurricane challenges. The findings of this work have guiding significance to these cities on enhancing urban resilience 
against EWEs impact. 

Guangzhou was severely impacted by two consecutive typhoon events, namely Typhoon Hato and Typhoon Pakhar, in summer 
2017. Specifically, Typhoon Hato, a maximum category 16 storm according to China Meteorological Administration tropical cyclone 
database [54], made a landfall in a neighboring city of Zhuhai on August 23, 2017 and hit Guangzhou in the afternoon. It was the 
strongest typhoon that impacted Guangzhou in 2017, triggering an orange typhoon alert by China Meteorological Administration the 
day before the landfall. Four days later, Typhoon Pakhar, a maximum category 10 storm according to China Meteorological 
Administration tropical cyclone database [54], retraced Typhoon Hato’s path and hit Guangzhou again, when the city was still 
recovering from Typhoon Hato’s devastation. These two EWEs influenced Guangzhou for around five consecutive days, causing severe 
fluvial flooding, pluvial flooding and blackouts, evacuation of over 14 thousand people, widespread delays or cancellations of buses, 
trains and flights, and citywide closures of businesses, schools and other public facilities [55,56]. 

The mobility dataset used in this study was anonymized mobile phone geolocation records collected by a Chinese smartphone push- 
notifications service provider. The company operates a built-in software development kit (SDK) used by a wide range of popular 
smartphone applications in China to collect geolocation records from mobile phone users who have signed licensing agreements and 
agreed with the terms of privacy policy. The geolocation records are reported by GPS sensors embedded in mobile devices. The location 
reporting of the push-notifications service has triggering events, such as location movement, network connections and so on. The 
studied dataset, which we obtained from the above company under a non-disclosure agreement (NDA), contained geolocation records 
of 118,619 anonymized individuals over a study period between August 1 and September 30, 2017. Each individual was assigned a 
unique hashed ID, which could not be used to trace to any specific mobile phone device or person but would allow us to track and 
analyze the trajectories of each individual over the entire study period. In addition, the study only uncovered empirical findings in an 
aggregated manner. The above conditions ensured the legality of the mobility dataset and the protection of privacy. Table 2 shows a 
few sample data entries. 

Considering that people’s mobility patterns exhibit weekly regularity and that the influence of the two typhoon events lasted from 
Wednesday, August 23 to Sunday, August 27, only geolocations from Wednesday to Sunday in each weak were used for analyzing 
individual mobility patterns, and geolocations on Mondays and Tuesdays were excluded during data preprocessing. As such, the final 
dataset was composed of trajectories over a total of 40 days, in which the geolocations recorded on August 23–27 were used to capture 
individual mobility patterns perturbed by typhoons and those recorded in other weeks were used to capture individual mobility 
patterns under normal conditions. 

Furthermore, to ensure sufficient and representative geolocation records for capturing the mobility patterns of each individual, 
only individuals whose trajectories met the following criteria were included in the final dataset: (1) all trajectories of the individual 
should be located within Guangzhou during the study period; (2) the individual’s home location should be identifiable using the 
following algorithm [38]: the visited location where the individual stays for the longest time between 0 a.m. and 6 a.m. over the study 
period and for a minimum average of 3 h a day can be identified as this individual’s home location; (3) for any given day, the geo
locations should be distributed among at least five different hours, otherwise trajectories in this day should be excluded; (4) the in
dividual’s trajectories should cover the influence period of the two EWEs, namely August 23–27, 2017; (5) the individual’s trajectories 
should cover at least five entire typhoon-free weeks (from Wednesday to Sunday) during the study period. 

After filtering the data with the above criteria, the final dataset used in the following analyses included a total of 53,769 anony
mized individuals, which represented a sampling rate of approximately 0.29% of the city’s 18.7 million resident population. The 
spatial resolution for the dataset was approximately 20 m, and the average temporal resolution was approximately 7 min. On average, 
each individual in the dataset had around 125 timestamped geolocations per day. 

As shown in Table 2, the studied dataset also included certain demographic information about the anonymized individuals, 
including their gender and age group. Specifically, each individual was identified as either male or female, and was categorized in one 
of the following four age groups, namely 18–24, 25–34, 35–44, and above 45. Individuals under 18 years old were not included in the 
dataset. The above demographic information was estimated based on the individuals’ usage patterns of smartphone applications 
(APPs) and histories of points of interest (POIs) visitations, using proprietary, non-disclosed algorithms developed by the original 
source and owner of the studied dataset. 

Like datasets used in other urban mobility studies, our dataset was not perfect; rather, it bore two inherent limitations that should 
be acknowledged. First, given the nature of the dataset, the sampling of the city’s population was not entirely random, and was 
impacted by individuals’ accessibility to mobile devices and whether collection of location information was allowed on the mobile 

Table 2 
Examples of GPS trajectory data entries.  

User ID Timestamp Longitude Latitude Gender Age group 

***73f5 170810004149 113.148 23.465 Female 18–24 
***80b9 170801165546 113.838 23.172 Female 35–44 
***ea46 170801001508 113.321 23.024 Male 25–34 
***73a3 170807213752 113.383 23.126 Female 35–44 
***a30b 170801124858 113.308 23.081 Female 18–24 
***c1ae 170809131232 113.331 23.023 Female 45+
***1e21 170801223442 113.499 23.472 Male 25–34  
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devices. Second, the proprietary algorithm adopted to estimate the demographic information had an approximate accuracy of 80% 
according to the data provider/algorithm developer, which indicated that the influence of estimation errors was likely limited but 
could not be completely ruled out. To address the above limitations, additional tests were conducted in this study that aimed to assess 
the representativeness and reliability of the studied dataset. Specifically, based on the estimated home location of every individual in 
the studied dataset, the spatial distribution of the home locations of all individuals among the 11 districts in Guangzhou was calcu
lated. This distribution was compared to the actual district-level spatial distribution of the city’s population according to the latest 
official census data [57]. The result is illustrated in Fig. 2. Similarly, the gender and age group distributions of all individuals in the 
studied dataset were compared to the actual gender and age group distributions of the city’s population. The result is illustrated in 
Fig. 3. These two figures showed that the studied dataset generally matched the census data well, except that the proportion of males 
and the proportion of individuals in age group of 25–34 were slightly larger in the dataset, which probably resulted from a systematic 
bias of the user group of the data provider. 

4.2. Data processing 

The geolocations in the studied dataset were processed before analyses. Details of the processing steps are explained as follows. 

4.2.1. Detecting mobility phases 
To extract mobility patterns from trajectory data, it is important to first identify the places that people actually visit and distinguish 

them from the places they pass by. There are two separate phases of human mobility, namely the static phase where an individual 
spends some time in a place, and the moving phase where an individual moves towards a place. A simple heuristic widely used in prior 
studies was adopted for detecting the two phases: if two consecutive geolocations in an individual’s GPS trace pi and pi+1 satisfy 
inequality (11) [58,59]: 

||pi − pi+1||

ti+1 − ti
≤ Δ (11)  

where ti+1 and ti are the timestamps of pi+1 and pi, respectively, then pi is considered to belong to the static phase. Since observed 
human walking speed is generally at 4–5 km/h (1.1–1.4 m/s), the value of Δ in the above inequality is set as 1.3 m/s in consistence with 
prior studies [59]. 

4.2.2. Extracting visited locations 
After the static phases were identified, the next step of the data processing was to extract visited locations from the static phases. A 

visited location is defined as a spot where an individual stands still or moves around very slowly for some time [59]. A visitation starts 
with the individual’s arrival at a visited location and ends at the departure. The movement from one visited location to another is 
defined as a trip. To extract visited locations, the following methods were adopted in this study. 

First, based on geolocations belonging to static phases, geolocation clusters were extracted using the DBSCAN (Density-Based 
Spatial Clustering of Application with Noise) algorithm [60]. This algorithm is widely used in prior studies to remove abnormal 
geolocation records, and extract the spots that each individual visits from the individual’s trajectories [61,62]. As two key DBSCAN 
parameters, the maximum search radius and the minimum number of points to form a cluster were set to be 50 m and 2 respectively in 
this study, based on recommended settings in prior research that used similar dataset [63]. The DBSCAN algorithm was applied to the 
studied dataset, which generated a number of geolocation clusters for each individual. Second, as these geolocation clusters included 
geolocation records from different visits paid by the same individual, they represented spots where the individual stopped, regardless 
of how long the individual stayed there, therefore, some of the geolocation clusters could be associated with occasional pauses, such as 
waiting at crossroads or getting caught in traffic jams might be contained [58,59]. In order to exclude those pauses and extract real 

Fig. 2. Spatial distributions of the population in the studied dataset and census data.  
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visited locations for each individual, geolocation clusters where an individual never stayed for more than 5 min during a single visit 
were removed [59,64]. Finally, the each remaining geolocation cluster was considered to represent a unique visited location, whose 
coordinates were determined by the centroid of the corresponding geolocation cluster. 

After the visited locations were extracted, the arrival time and departure time of each visitation, as well as every trip made by each 
individual during the study period were identified, a few samples of which are shown in Table 3. Then, the visitation frequency and 
waiting time of each visited location during the study period were calculated, a few samples of which are shown in Table 4. 

5. Results 

5.1. Individual mobility perturbation 

All metrics in Table 1 were calculated for every individual in the dataset and for each week (from Wednesday to Sunday) over the 
study period. For each individual, the average weekly value of each metric during typhoon-free time was calculated and used to 
represent its normal state, while its weekly value during the typhoon events was used to represent its perturbed state. The descriptive 
statistics of all metrics in normal state and perturbed state are summarized in Table 5, respectively. The KS test and Wilcoxon rank-sum 
test results, as reported in Table 6, showed that distributions and mean values of all metrics exhibited significant changes during the 
typhoon week, suggesting that the typhoon events caused substantial perturbations to the mobility of the studied individuals in 
Guangzhou. 

More specifically, for visited locations, as shown in Fig. 4a, the metrics l, ft, f1, f2 and f5 followed heavy-tail distribution in both 
normal state and perturbed state. However, the proportion of individuals with fewer visited locations and lower visitation frequency 
increased during the typhoon week, resulting in remarkable deviation in distributions of the metrics. It was also discovered that on 
average people tended to visit fewer places and make fewer travels due to the influence of typhoon (Fig. 4b). Fig. 4c, which shows the 
trajectories of a typical individual under normal conditions and during the typhoon week, illustrates how the characteristic of visited 
locations could be perturbed by the typhoon events. 

The perturbation in movement range is illustrated in Fig. 5. It was discovered that the distribution of Rg during typhoon week 
shifted leftward and the number of individuals with lower Rg increased (Fig. 5a and b), which indicated that, when influenced by 
typhoon, individuals’ movement range became relatively restricted. This phenomenon is further illustrated with the trajectories of a 
typical individual in Fig. 5c. 

As for the perturbation in waiting time, the mean values of all related metrics, including tt, th, t1, t2 and t5, notably decreased 
(Fig. 6b), although the distributions of these metrics followed similar trend (Fig. 6a). The result suggested that people tended to spend 
more time staying indoors and less time travelling during the typhoon week. 

According to Table 7, further analysis of the magnitude of individual mobility perturbation showed that, when influenced by 
Typhoons Hato and Pakhar, studied individuals in Guangzhou exhibited 7.56% decrease in the number of visited locations, 9.9% 
decrease in visitation frequency, 17.19% decrease in movement range and 0.57% increase in waiting time. It was also discovered that 
individuals’ recurrent mobility, reflected by rf1, rf2, rf5, rt1, rt2 and rt5, was affected by the typhoon events. It should be noted that the 
mean value of rft was larger than that of rf1, rf2 and rf5, while the mean value of rtt was smaller than that of rt1, rt2 and rt5. This suggested 

Fig. 3. Gender and age distributions of population in the studied dataset and census data.  

Table 3 
Examples of trip records for ID ***f341.  

Visited Location Arrival time Departure time Longitude Latitude 

0 170802093354 170802113230 113.3219 23.1999 
1 170802235318 170803085008 113.3009 23.2339 
0 170803092624 170803204135 113.3219 23.1999 
1 170803213625 170804083624 113.3009 23.2339 
0 170804092133 170804130738 113.3219 23.1999 
2 170804143447 170804153324 113.3217 23.1971 
… … … … …  

X. Zhang and N. Li                                                                                                                                                                                                    



International Journal of Disaster Risk Reduction 72 (2022) 102849

10

that, compared to individuals’ overall mobility pattern, their recurrent mobility showed a weaker perturbation in visitation frequency 
but a greater perturbation in waiting time. In addition, the mean value of metric Distdtw was 0.0607, which suggested that individual’s 
daily movement status varied by 6.07% on average, indicating there was notable influence of typhoon events on individual’s daily 
schedules. 

Table 4 
Visitation frequency and waiting time of each location for ID ***f341.  

Visited Location Visitation Frequency Waiting Time Longitude Latitude 

0 28 1741891 113.3009 23.2339 
1 51 1530888 113.3219 23.1999 
2 3 12290 113.3217 23.1971 
6 10 12125 113.3197 23.1994 
26 3 10254 113.315 23.12 
45 2 9632 113.3230 23.1903 
… … … … …  

Table 5 
Descriptive statistics of metrics characterizing individual mobility pattern.  

Metric M SD Q.25 Q.75 Maximum Minimum 

Normal state 
l 8.319 7.704 3.75 10.5 169.714 1 
ft(count) 31.153 34.855 12.167 37.857 905.8 1 
f1(count) 10.954 12.464 5.25 12.25 417.2 1 
f2(count) 17.722 19.782 8 20.5 496.2 1 
f5(count) 23.603 26.013 10.333 27.857 634.4 1 
Rg(m) 2775.551 3149.115 596.790 3849.658 35999.290 0 
tt(s) 360837.106 53485.055 331552.714 401034.286 432000 64563 
th(s) 280869.824 91686.477 207654.8 364688.857 432000 55690.25 
t1(s) 280800.191 91786.392 207617.2 364688.857 432000 34790.857 
t2(s) 335056.154 68490.174 290966.167 389736.8 432000 47716.8 
t5(s) 353477.913 57340.099 319936.714 397281.0 432000 60765.4 
Perturbed state 
l 7.628 8.012 3 10 178 1 
ft(time) 28.076 39.870 9 34 1204 1 
f1(time) 10.421 15.208 4 11 526 1 
f2(time) 16.890 23.544 6 19 694 1 
f5(time) 22.429 30.937 8 25 1004 1 
Rg(m) 2651.954 4000.283 268.905 3441.415 49278.739 0 
tt(s) 366280.478 59991.620 335137 412649 432000 70751 
th(s) 288729.499 101247.398 208080 387934 432000 54012 
t1(s) 288702.681 102757.405 207960 387864 432000 36123.243 
t2(s) 345267.196 76479.523 295234 4069235 432000 63930 
t5(s) 359704.665 64107.925 324093 410371 432000 69117 

Note: M = mean value; SD = standard deviation; Q.25 and Q.75 represent the upper and lower quartile of the value of metrics, respectively. 

Table 6 
KS test and Wilcoxon rank-sum test results.   

Metric KS test Wilcoxon rank-sum test  

Statistic p-value Statistic p-value 

Visited 
Location 

L 0.1259 0.0 4.51e8 0.0*** 
ft 0.1527 0.0 4.86e8 0.0*** 
f1 0.1130 3.78e-299 5.03e8 0.0*** 
f2 0.1038 2.24e-252 5.03e8 0.0*** 
f5 0.1015 2.16e-241 4.85e8 0.0*** 

Movement 
Range 

Rg 0.1408 0.0 4.82e8 0.0*** 

Waiting 
Time 

tt 0.1019 2.43e-243 5.23e8 0.0*** 
th 0.0885 8.87e-184 5.56e8 0.0*** 
t1 0.0885 8.87e-184 5.55e8 0.0*** 
t2 0.0926 2.34e-201 5.29e8 0.0*** 
t5 0.1012 2.43e-243 5.21e8 0.0*** 

Note: p < 0.05 *; p < 0.01 **; p < 0.001 ***. 
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5.2. Individual variation of mobility perturbations 

Based on the six independent variables (three categorical variables and three numerical variables) introduced in Section 3.2.1, the 
characteristics of all individuals in the studied dataset were computed, and the results are summarized in Tables 8 and 9. The result of 
Kaiser-Meyer-Olkin measure was 0.7798 (>0.7) and that of Bartlett’s sphericity test was 1070250.24 (P < 0.001), suggesting a strong 
correlation between some of the dependent variables. Therefore, factor analysis was conducted to reduce the number of dependent 
variables. 

As shown in Table 10, a total of four factors were obtained based on the factor analysis result, accounting for 88.76% of the total 
variance. These four factors, termed based on the perspectives from which they reflected mobility perturbations, were F1 (waiting time 

Fig. 4. The perturbation of individual mobility pattern in terms of visited locations.  

Fig. 5. The perturbation of individual mobility pattern in terms of movement range.  
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perturbation), F2 (visitation frequency perturbation), F3 (visited location and movement range perturbation), and F4 (movement 
status perturbation). The descriptive statistics of these four factors are summarized in Table 11. It should be noted that a negative value 
of F1 represented an increase in waiting time, a negative value of F2 and F3 represented a decrease in visitation frequency, number of 
visited locations or movement range, and a larger value of F4 represented a greater perturbation in movement status pattern. These 
fours factors were used as final dependent variables in the following linear regression analysis. 

The results of the multiple linear regression analysis are summarized in Tables 12–15. These results have led to several findings. 
First of all, mobility perturbation of females during disasters was generally greater than that of males. It could also be found that 
individuals aged above 45 years old had a larger mobility perturbation during the typhoon week. Second, under the influence of 
typhoon events, individuals’ home location showed a notable impact on their waiting time perturbation and movement status 
perturbation (Tables 12 and 15), while showing no obvious effect on their visited location or movement range perturbations (Tables 13 

Fig. 6. The perturbation of individual mobility pattern in terms of waiting time.  

Table 7 
Descriptive statistics of metrics quantifying individual mobility perturbation.  

Metric M SD Q.25 Q.75 

rl − 7.56% 0.224 − 21.31% 6.62% 
rft − 9.90% 0.273 − 23.44% 6.51% 
rf1 − 7.41% 0.253 − 20.75% 6.93% 
rf2 − 7.53% 0.258 − 20.59% 6.90% 
rf3 − 8.25% 0.267 − 21.95% 6.93% 
rRg − 17.19% 0.436 − 44.69% 5.91% 
rtt 0.57% 0.057 − 1.17% 3.17% 
rth 0.69% 0.108 − 3.32% 6.11% 
rt1 0.72% 0.108 − 3.30% 6.13% 
rt2 0.78% 0.078 − 1.90% 4.62% 
rt5 0.67% 0.062 − 1.37% 3.62% 
Distdtw 0.0607 0.039 0.0339 0.0818 

Note: M = mean value; SD = standard deviation; Q.25 and Q.75 represent the upper and lower quartile of the value of metrics, respectively. 

Table 8 
Characteristics of individuals in the studied dataset.  

Characteristic Group Frequency Percentage 

Gender Male 30656 57.01% 
Female 23113 42.99% 

Age 18–24 12387 23.04% 
25–34 21380 39.76% 
35–44 9762 18.16% 
45+ 10240 19.04% 

Travel preference Explorer 30656 57.01% 
Returner 23113 42.99%  

Table 9 
Descriptive statistics for three numerical variables.   

M SD Q.25 Q.75 Maximum Minimum 

Rg (m) 2775.551 3149.115 596.790 3849.658 35999.290 0 
home_to_cbd (m) 18188.639 14872.427 6798.914 26273.046 108813.052 58.617 
home_to_typhoon (m) 88090.460 11831.805 80716.698 93791.090 163198.381 57650.566 

Note: (1) M = mean value; SD = standard deviation; Q.25 and Q.75 represent the upper and lower quartile of the value of metrics, respectively. (2) The tracks of 
typhoons can be found in China Meteorological Administration’s database [54]. 
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Table 10 
Factor analysis results.  

Factor Metrics contained in factor Rotated component Eigenvalue Proportion Cumulative 

F1 
Waiting Time 
Perturbation 

rtt 
rth 

rt1 

rt2 

rt5  

− 0.8908 5.7877 48.23% 48.23% 
− 0.9001 
− 0.9439 
− 0.9187 
− 0.8986 

F2 
Visitation Frequency 
Perturbation 

rft 
rf1 

rf2 

rf5  

0.9337 2.7716 23.10% 71.33% 
0.9590 
0.9295 
0.8897 

F3 
Visited Location and Movement Range 
Perturbation 

rl 
rRg  

0.7606 
0.8885 

1.1567 9.64% 80.97% 

F4 
Movement Status 
Perturbation 

distDTW  0.9724 0.0935 7.79% 88.76% 

Note: Rotated component is a key output of factor analysis, which reflects estimates of the correlation between each of the metrics and the four factors. 

Table 11 
Descriptive statistics of four factors.  

Metric M SD Q.25 Q.75 Maximum Minimum 

F1 − 0.0313 0.3515 − 0.2074 0.0992 2.7784 − 2.1227 
F2 − 0.3012 0.9325 − 0.7646 0.2187 3.5583 − 3.6670 
F3 − 0.2103 0.5007 − 0.5053 0.0763 1.5223 − 1.6033 
F4 0.0591 0.0382 0.0330 0.0795 0.4803 0.0000 

Note: M = mean value; SD = standard deviation; Q.25 and Q.75 represent the upper and lower quartile of the value of metrics, respectively. 

Table 12 
Multiple linear regression analysis result for F1 (waiting time perturbation).  

Variable Coefficient Standard error t p-value 95% CI 

gender[male] 0.0089 0.003 2.868 0.004** (0.003, 0.015) 
age[25 − 34] − 0.0066 0.004 − 1.657 0.098 (-0.014, 0.001) 
age[35 − 44] − 0.0118 0.005 − 2.473 0.013* (-0.021, − 0.002) 
age[45 + ] − 0.0142 0.005 − 2.994 0.003** (-0.024, − 0.005) 
type[returner] 0.0106 0.003 3.481 0.001** (0.005, 0.017) 
rg  − 5.62e-6 4.88e-7 − 11.506 0.000*** (-6.57e-6, -4.66e-6) 
home to cbd  − 1.35e-7 1.28e-7 − 1.054 0.292 (-3.85e-7, 1.16e-7) 
home to typhoon  8.88e-7 1.59e-7 5.571 0.000*** (5.76e-7, 1.20e-6) 

Note: Number of observations = 53769; Adjusted R-squared = 0.003. 
p < 0.05 *; p < 0.01 **; p < 0.001 ***. 

Table 13 
The results of multiple linear regression for F2 (visitation frequency perturbation).  

Variable Coefficient Standard error t p-value 95% CI 

gender[male] 0.0332 0.008 4.014 0.000** (0.017, 0.049) 
age[25 − 34] 0.0249 0.011 2.357 0.018* (0.004, 0.046) 
age[35 − 44] 0.0059 0.013 0.466 0.641 (-0.019, 0.031) 
age[45 + ] − 0.0133 0.013 − 1.057 0.291 (-0.038, 0.011) 
type[returner] 0.0142 0.008 1.753 0.080 (-0.002, 0.030) 
rg  − 5.88e-6 1.30e-6 4.531 0.000*** (3.33e-6, 8.42e-6) 
home to cbd  − 1.20e-7 3.39e-7 − 0.353 0.724 (-7.84e-7, 5.45e-7) 
home to typhoon  7.62e-7 4.24e-7 1.798 0.072 (-6.84e-8, 1.59e-6) 

Note: Number of observations = 53769; Adjusted R-squared = 0.001. 
p < 0.05 *; p < 0.01 **; p < 0.001 ***. 
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and 14). It was found that the further an individual lived away from the CBD, the more significantly his/her movement status was 
influenced by the typhoon events (Table 15); the closer the individual lived to the center of typhoon tracks, the more significantly his/ 
her waiting time increased (Table 12). Third, individuals’ Rg in normal time had a significant impact on all dependent variables (all p 
< 0.001 in Tables 12–15), which suggested that individuals who preferred distant movements experienced a more intense mobility 
perturbation during the typhoon week. In addition, the mobility perturbation of explorers was greater than that of returners, especially 
in terms of the movement range and number of visited locations (Table 14). 

Besides analyzing the relationship between individual’s characteristics and individual mobility perturbation, this study also 
revealed the individual variation of mobility perturbation by clustering individuals into several groups. K-means clustering algorithm 
was adopted in this study. Individuals’ mobility perturbations were characterized by a four-dimensional variable composed of four 
factors introduced above, namely vector (F1, F2, F3, F4), based on which the k-means clustering algorithm was computed. To 
determine the number of clusters k, this study adopted the Elbow method explained in Section 3.3.3. As shown in Fig. 7, the part of the 
line graph where k < 4 was steeply declining, while the part where k < 4 was much smoother. Therefore, in this study, k-means 

Table 14 
The results of multiple linear regression for F3 (visited location and movement range perturbation).  

Variable Coefficient Standard error t p-value 95% CI 

gender[male] 0.0224 0.004 5.074 0.000*** (0.014, 0.031) 
age[25 − 34] 0.0380 0.006 6.729 0.000*** (0.027, 0.049) 
age[35 − 44] 0.0414 0.007 6.106 0.000*** 0.028, 0.055) 
age[45 + ] 0.0066 0.007 0.981 0.327 (-0.007, 0.020) 
type[returner] 0.0934 0.004 21.513 0.000*** (0.085, 0.102) 
rg  − 3.5e-6 6.93e-7 − 5.050 0.000*** (-4.86e-6, -2.14e-6) 
home to cbd  − 1.13e-9 1.81e-7 − 0.006 0.995 (-3.56e-7, 3.54e-7) 
home to typhoon  2.73e-7 2.26e-7 1.207 0.228 (-1.71e-7, 7.17e-7) 

Note: Number of observations = 53769; Adjusted R-squared = 0.010. 
p < 0.05 *; p < 0.01 **; p < 0.001 ***. 

Table 15 
The results of multiple linear regression for F4 (movement status perturbation).  

Variable Coefficient Standard error t p-value 95% CI 

gender[male] 0.0073 0.000 22.973 0.000*** (0.007, 0.008) 
age[25 − 34] − 0.0040 0.000 − 9.747 0.000*** (-0.005, − 0.003) 
age[35 − 44] − 0.0062 0.000 − 12.709 0.000*** (-0.007, − 0.005) 
age[45 + ] − 0.0119 0.000 − 24.499 0.000*** (-0.013, − 0.011) 
type[returner] − 0.0097 0.000 − 30.890 0.000*** (-0.010, − 0.009) 
rg  2.89e-6 5.01e-8 57.652 0.000*** (2.79e-6, 2.99e-6) 
home to cbd  2.86e-7 1.31e-8 21.825 0.000*** (2.60e-7, 3.12e-7) 
home to typhoon  − 3.72e-8 1.64e-8 − 2.275 0.023* (-6.93e-8, -5.16e-9) 

Note: Number of observations = 53769; Adjusted R-squared = 0.109. 
p < 0.05 *; p < 0.01 **; p < 0.001 ***. 

Fig. 7. The relationship between the number of clusters (k) and distortion.  

X. Zhang and N. Li                                                                                                                                                                                                    



International Journal of Disaster Risk Reduction 72 (2022) 102849

15

clustering algorithm was performed with k = 4. The results are shown in Table 16. 
Four clusters were extracted, which contained 29.74%, 14.03%, 10.00% and 46.24% of the studied individuals respectively. As 

shown in Table 16, the mean values of F1, F2, F3 and F4 for individuals belonging to Cluster 4 were close to zero, indicating a slight 
perturbation of individual mobility pattern during EWEs. Individuals who belonged to Cluster 2 and Cluster 3 all possessed negative 
values of F1, F2 and F3, but the mobility perturbation of individuals in Cluster 3 was much greater than that of individuals in Cluster 2. 
As for individuals in Cluster 1, their mobility perturbations showed a different pattern. They possessed positive values of F1, F2 and F3, 
reflecting an increase in visitation frequency and number of locations, but a decrease in waiting time during EWEs. 

The above results showed strong variations in individuals’ mobility perturbation, indicating that there existed different patterns of 
responses to EWE-induced impacts among the population. Specifically, a large proportion of individuals belonged to Cluster 4 whose 
mobility was only slightly influenced by EWEs. Around 10% of individuals belong to Cluster 3 and were vulnerable to the impact of 
EWEs. They tended to visit few places, make fewer travels and spend more time staying indoors during EWEs and their movement 
ranges were also largely restricted, just as what was observed in Section 5.1 and Table 11. Comparatively, individuals belonging to 
Cluster 2 who accounted for 29.51% of the total population also showed similar patterns of perturbations in their mobility. However, 
the magnitude of their mobility perturbation was much smaller than that of individuals in Cluster 3. Meanwhile, individuals in Cluster 
1 showed different characteristics in their mobility perturbations. They tended to visit more places and make more travels, and they 
had shorter waiting time during EWEs. 

6. Discussions 

This study proposed a three-module analytical framework for characterizing individual mobility perturbations during EWEs, and 
demonstrated its efficacy by applying it to investigate the impact of Typhoons Hato and Pakhar on the mobility of citizens in the city of 
Guangzhou. Based on the results of the case study, the following three findings could be drawn. First, while prior studies have reported 
that people’s travel length and radius of gyration would be significantly perturbed under EWEs [17,65], this study found that EWEs 
could also cause notable perturbations in individuals’ visited locations and waiting time. Specifically, the case study results suggest 
that individuals’ number of visited locations and visitation frequency tend to decrease while their waiting time tend to increase during 
EWEs. This reflects an overall reduction in traffic demand and people’s travel intention during EWEs, and corroborates with prior 
studies that reported similar phenomenon. For instance, prior studies have observed the reduction of traffic volumes and the change on 
traffic demand due to extreme weathers such as cold and snow [66,67]. Second, the results showed that individuals’ movement status 
also changed during the EWEs. The perturbation of movement status reflects the influence of EWEs on individuals’ daily life. During 
EWEs, they may have to adjust their schedules and minimize travels, due to e.g. the collapse of transportation systems, closure of 
schools and offices, or concerns over personal safety [67,68]. Third, by comparing different aspects of the assessed individual mobility 
perturbation, it was found that individuals’ recurrent mobility showed a weaker perturbation in visitation frequency but a greater 
perturbation in waiting time. It indicates that people are more likely to visit and stay in their familiar places, namely places they 
frequently visited in normal conditions, when under the influence of EWEs. More importantly, this finding also suggests that frequently 
visited locations not only characterize people’s mobility pattern in steady states [24,31,69], but also play an important role in shaping 
people’s perturbed mobility patterns. 

The investigation of the correlation between individuals’ characteristics and their mobility perturbation also leads to new insights 
about individual mobility perturbations. For example, as aforementioned, the results showed that the further one lived to the CBD, the 
more significantly his/her movement status was influenced by the typhoon events. This finding suggests that there is remarkable 
variation in mobility perturbations experienced by people living in different regions in a city, which highlights the significance of 
spatial heterogeneity of EWE-induced impact [39] and human mobility resilience [70]. A possible explanation of such spatial het
erogeneity could be that people who live further from the CBD usually have long-distance commutes every day, and their routine 
travels are more easily affected by EWEs. In addition, the spatial heterogeneity of EWE-induced individual mobility perturbation may 
also be attributed to the imbalanced accessibility to infrastructure and various essential services in cities [38]. For instance, prior 
research has found that recreational and commercial trips tend to be more severely influenced than commuting trips [71]. Therefore, 
people living in suburban areas, who are more likely to have less accessibility to recreational and commercial facilities than those 
living in the downtown areas and hence have to travel longer to access these services, become more vulnerable to EWE-induced 
impacts. Another important finding of this study is that, the perturbed individual mobility pattern during EWEs possesses a certain 
degree of predictability. It was found in this study that Rg in normal time had a significant impact on individual mobility perturbation, 
which is aligned with similar findings reported by prior research [20]. This study also revealed for the first time in the literature that 
the mobility perturbation of individuals who were categorized as explorers based on their regular mobility patterns was greater than 

Table 16 
The results of k-means clustering.  

Cluster Proportion of the population Characteristics of individuals’ mobility perturbation 

F1 (M) F2 (M) F3 (M) F4 (M) 

1 13.77% 0.2167 1.0885 0.0400 0.0733 
2 29.51% − 0.1287 − 0.8187 − 0.3442 0.0540 
3 9.98% − 0.2481 − 2.1568 − 0.8231 0.0427 
4 46.74% 0.0033 0.0123 − 0.0686 0.0615 

Note: M means mean value. 
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the mobility perturbation of returners, especially in terms of movement range and number of visited locations. The above correlations 
between individuals’ mobility perturbations and their mobility pattern in normal time indicate the possibility of predicting human 
mobility during EWEs based on human mobility data collected in normal time. 

The findings of this study also bear a few important implications for urban planning and crisis management. First, as prior research 
has pointed out, knowledge about human mobility perturbation can be used to inform the estimation of EWE impacts [72]. Specif
ically, the proposed analytical framework could facilitate policy maker with assessing the magnitudes of EWE impacts, determining the 
spatial distribution of the impacts within city boundaries, and evaluating the effectiveness of particular risk reduction policies, which 
could promote the optimal allocation of emergency response resources and urban mobility planning in the aftermath of EWEs. Also, by 
linking individual mobility perturbations to important public entities, city managers could foresee whether critical public services 
could be assured during EWEs and take proper emergency response measures accordingly. Third, in line with prior research that found 
individual characteristics to be associated with people’s reaction to extreme events [40,70,73], this study reveals that mobility 
perturbation varies among individuals with different characteristics and clusters individuals into several groups with different re
sponses to EWEs. As such, the proposed analytical framework provides policy makers with a possible tool to predict people’s mobility 
perturbation based on their demographic attributes, home location and travel preference, and hence identify those who are vulnerable 
to EWE-induced impacts. These people could therefore be prioritized in risk mitigation measures. Lastly, this study also highlights the 
spatial heterogeneity of EWE-induced impact that is partially attributed to people’s imbalanced accessibility to infrastructure and 
various essential services in different regions of the city. This not only informs policy makers of the potential existence of social 
inequity in terms of the resilience to EWE impacts, which should be considered in EWE impact mitigation strategies, but also suggests 
that these strategies need to be incorporated in the long-term urban planning practices. For example, this study reveals that individuals 
living in suburban exhibit greater mobility perturbation, due the long-distance commutes and the lack of recreational and commercial 
facilities in their neighborhood. This calls for providing more transportation infrastructure and services to improve accessibility in 
suburban areas and balancing jobs-housing relationship and housing supply between suburbs and city centers to reduce city-wide 
commuting distance [13]. Meanwhile, the results also suggest that a polycentric urban structure is more resilient than a mono
centric one [74]. Above all, urban planners and policy makers could incorporate the knowledge of EWE-induced mobility perturbation 
into the urban development scheme and risk reduction strategies to enhance urban resilience. 

7. Conclusions 

EWEs are significant threats to urban regions. Urban human mobility, as a fundamental component of the urban system, is sensitive 
to such impact and shows perturbation in its spatial-temporal characteristics under the influence of EWEs. This study proposed an 
analytical framework for characterizing individual mobility perturbation under EWEs. The proposed framework is composed of three 
modules that are designed to capture individual mobility patterns, assess individual mobility perturbations, and examine the corre
lations between individuals’ characteristics and their mobility perturbations. The findings of this study demonstrated that: (1) indi
vidual mobility pattern exhibited significant changes under the influence of EWEs. To be more specific, individuals would experience 
decreases in the number of visited locations, visitation frequency and movement range, increases in waiting time, and changes in 
movement status pattern; (2) individuals’ recurrent mobility, compared with their overall mobility pattern, showed weaker pertur
bation in visitation frequency but greater perturbation in waiting time during EWEs; and (3) individuals’ mobility perturbation closely 
correlated with their characteristics including demographic attributes, home location and travel preference. 

The contributions of this study are multifold. First, it expands the connotation of individual mobility perturbation by integrating a 
wide range of spatial-temporal characteristics and provides a manifold understanding of individual mobility perturbation and the 
affected city functioning under the influence of EWEs. Meanwhile, this study also contributes to assessing individual mobility 
perturbation. The methods proposed in the analytical framework could be used to compare EWE impact between different regions or 
extreme events, the results of which could inform urban crisis management and resilience enhancement. Moreover, this study reveals 
possible influencing factors of individual mobility perturbation, which offers possible explanations of why people’s mobility patterns 
would be perturbed during EWEs and why the perturbations may vary among individuals. Also, by clustering individuals into several 
groups according to their mobility perturbation, this study demonstrates the existence of different patterns of responses to EWE- 
induced impact among individuals. The above advancement of knowledge on human mobility lays solid foundation for future 
research to further look into the modeling and prediction of EWE-perturbed urban human mobility. Practically, the knowledge of 
individual mobility pattern under the impact of EWEs could enable policy makers to identify vulnerable individuals and prioritize their 
protection, predict urban mobility during EWEs, select effective emergency response measures, and implement resilience oriented 
urban planning, which are all important issues for improved safety of cities and their residents during EWEs. 

This study bears three limitations that are noteworthy. First, due to the constrain of regulations, individuals under 18 years old 
were not included in the analysis. However, as a potentially vulnerable group, their mobility perturbation should be analyzed by future 
studies if possible. Second, the adjusted R-square was relatively small in the regression analysis results, which indicated that using the 
independent variables in the regression model alone could not fully interpret or accurately predict the individual mobility pertur
bation. To develop an accurate prediction model of the individual mobility perturbation, future studies could adopt more variables to 
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describe individual characteristics when granular data are made available. For example, when characterizing demographic attributes, 
in addition to gender and age, other key factors such as class, occupation and economic situation could also be investigated. Third, this 
study mainly focused on the relationship between individual’s characteristics and mobility perturbation, but how one’s characteristics 
influence his or her mobility perturbation still requires further exploration. Future efforts could be made to study the underlying 
influence mechanisms of these factors on individual mobility perturbation, which could lead to deeper understanding of and better 
ways to model and predict individuals’ behaviors under the influence of the EWEs. 

To sum up, by investigating EWE-induced individual mobility perturbation in cities, this study provides a new perspective to 
understand the multifaceted influences of EWEs in urban regions, including the failure of urban infrastructure system, the anomaly of 
socio-economic activities and people’s perturbed behavioral patterns. The findings in this study could potentially provide guidance for 
urban planning and crisis management. Firstly, a quantitative measurement of individual mobility perturbation is proposed in this 
study, providing foundation for EWE-induced impacts estimation and risk reduction policy evaluation, which could improve emer
gency response and urban mobility planning in cities. Moreover, by looking into the individual variation of mobility perturbation, the 
analytical framework proposed in this study could help policy makers to identify the most vulnerable groups under the impacts of 
EWEs and offers an example that the knowledge about individual mobility perturbation could ultimately advance urban resilience. 
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