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System Dynamics Modeling-Based Approach for
Assessing Seismic Resilience of Hospitals:
Methodology and a Case in China
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Abstract: Hospitals play a crucial role in providing badly needed medical care after earthquakes. Meanwhile, hospitals are likely to find
themselves subject to earthquake impacts and may fail to function, which highlights that there is significant need for enhancing their resilience
to earthquakes. Nevertheless, effective assessment of hospital seismic resilience is lacking, which makes devising and benchmarking ap-
propriate resilience enhancement measures challenging. This study proposes a new functionality-based assessment approach of hospital
resilience to earthquakes. A new indicator of hospital functionality is proposed, and a system dynamics model of hospital functionality
after earthquakes (SD-HFE) is developed to simulate hospital functionality. The resilience assessment can then be conducted based on
the functionality curve, which considers both the loss and the recovery of hospital functionality. Based on a case study in China, the efficacy
of the proposed approach is tested. The proposed approach advances understanding of how hospital functionality evolves after an earthquake,
and allows quantitative assessment of hospital seismic resilience. The outcomes of this study will contribute to the development of informed
policies and effective engineering measures to enhance the seismic resilience of hospitals. DOI: 10.1061/(ASCE)ME.1943-5479.0000814.

© 2020 American Society of Civil Engineers.

Introduction

Earthquakes are one of the most destructive natural disasters. From
1998 to 2017, earthquakes occurred 563 times, which accounted
for 7.8% of all types of natural disasters but were responsible
for 56% of all fatalities caused by natural disasters all around
the world (Wallemacq and House 2018). Hospitals play a crucial
role in mitigation and the recovery of disaster-hit regions, providing
continued access to care (Arboleda et al. 2009, Cimellaro et al.
2018). Almost 97% of injuries occur within the first 30 minutes
after earthquakes (Gunn 1995), which requires a rapid and effective
medical response. However, hospitals are themselves likely subject
to earthquake impacts (Li et al. 2019). For instance, the 1995 Great
Hanshin earthquake resulted in 110 structurally damaged and 4
completely destroyed hospitals, out of the 180 hospitals in the
disaster-hit area (Ukai 1996). Damage to hospitals and equipment
and supplies, as well as loss of staff, will undoubtedly result in a
loss of hospital functionality, which will substantially exacerbate
disaster consequences (Albanese et al. 2008).
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During disasters like earthquakes, hospitals are required to be
more than structurally safe; they must maintain their functions
and continue to provide medical care. The resilience of hospitals,
which is focused on their capability to resist, absorb, and recover
from disasters while maintaining necessary functionality, has at-
tracted increasing attention (Zhong et al. 2014, Cimellaro et al.
2018). In 2005, “building hospitals with enough resilience level”
was set as one practice to reduce the underlying risk factors in
the Hyogo Framework for Action 2005-2015 (UNDRR 2007).
Then the Sendai Framework for Disaster Risk Reduction 2015-
2030, which was endorsed following the 2015 Third UN World
Conference on Disaster Risk Reduction (WCDRR), also high-
lighted the enhancement of hospital resilience to disasters as an
important priority for action (UNDRR 2015). There have also been
increasing studies in academia that focus on various challenges re-
lated to the disaster resilience of hospitals (Cimellaro et al. 2010b,
Achour et al. 2014, Zhong et al. 2015, Hassan and Mahmoud
2019), among which the assessment of hospital disaster resilience
is the most urgent. Quantifying hospital resilience to disasters is
essential and fundamental to benchmarking hospitals’ capability
to cope with disasters and to identifying hospitals’” vulnerability in
the face of disasters, which is crucial for targeted and effective resil-
ience enhancement measures. However, the need for an effective
approach to quantifying hospital resilience to earthquakes has
largely remained a gap in the literature. Current “indicator-based”
resilience assessment approaches, which assess hospital disaster
resilience with sets of evaluation indicators (WHO 2015), are diffi-
cult to use in parametric analysis, which is crucial for evaluating
potential resilience enhancement measures. Although “functionality-
based” resilience assessment, which assesses hospital disaster resil-
ience based on the functionality curve (Cimellaro et al. 2010a), can
overcome this limitation, efforts are still needed in the development
of an indicator of hospital functionality and an approach to analyze
both the loss of hospital functionality after earthquakes and its re-
covery over time.
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This study contributes to the existing body of knowledge by
proposing a new functionality-based assessment approach to hos-
pital resilience to earthquakes. First, a new indicator of hospital
functionality is proposed, and factors affecting hospital functional-
ity are identified and discussed in detail. Then system dynamics
(SD) modeling is employed that considers both loss and recovery
of hospital functionality. The simulation results provide the basis
for hospital seismic resilience assessment. Based on a case study in
China, the efficacy of the proposed assessment approach is tested.
The proposed approach can provide a tool to better understand
how hospital functionality evolves after an earthquake and to
quantitatively assess the overall seismic resilience of a hospital. The
outcomes of this study are expected to contribute to the resilience
management of hospitals by supporting the development of in-
formed policies and effective engineering measures with the pro-
posed resilience assessment approach, so that the resilience of
hospitals in seismic-prone regions can be enhanced against possible
seismic impacts in the future.

Literature Review

There are two types of assessment approaches to hospital disaster
resilience that are available in the existing literature: indicator-
based and functionality-based. Indicator-based approaches assess
hospital disaster resilience with a series of evaluation indicators.
The World Health Organization released the second edition of
Hospital Safety Index Guide for Evaluators in 2015, which pro-
vides a comprehensive checklist of indices for hospital safety and
resilience assessment (WHO 2015). The checklist includes four
modules covering hazard identification, structural safety, nonstruc-
tural safety, and emergency and disaster management. Each is
evaluated qualitatively by professionals who check one of three
options (low, average, and high). Zhong et al. (2015) established
a conceptual framework of hospital disaster resilience and proposed
a set of indicators for resilience assessment that includes 8 domains,
17 subdomains, and 43 indicators. Assessment of hospital resil-
ience using “indicator-based” assessment can be relatively compre-
hensive because of the flexibility to introduce different evaluation
indicators to cover various dimensions. However, these indicators
are usually described qualitatively and so are inherently vague and
subject to evaluators’ different interpretations when they are put
into practice. Meanwhile, indicator-based approaches are usually
used for resilience assessment of the current status of the hospitals
(WHO 2015). The difficulty in applying these approaches to differ-
ent scenarios prohibits comparison of the effectiveness of different
resilience enhancement measures.

Functionality-based assessment approaches assess the resilience
(R) of a system of any type using a functionality curve (Fig. 1). The
functionality [Q(7)] of a system varies between 0% and 100%, with
100% meaning that the system is fully functional, providing full
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Fig. 1. Disaster resilience. (Adapted from Cimellaro et al. 2010a.)
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service, and 0% meaning that the system malfunctions with zero
service availability. Mathematically, R can be calculated by inte-
grating Q(¢) from the occurrence of the event (#y) over a control
time for the period of interest (¢, ), as shown in Eq. (1) (Cimellaro
et al. 2010a, Cimellaro et al. 2016). In comparison with indicator-
based assessment, functionality-based assessment provides more
details on the behavior of a system over time after being attacked
by disruptions. Moreover, such a formula-format definition of
system resilience makes it much more feasible to adopt these
approaches in different application scenarios, especially with sim-
ulation tools (Cimellaro and Pique 2016, Khanmohammadi et al.

2018)
_ /ﬂ)*&c %dt (1)

Ire

When applying functionality-based assessment approaches to
assess hospital disaster resilience based on Eq. (1), it is essential to
first define and calculate hospital functionality. Yavari et al. (2010)
divided a hospital into four major systems: structural, nonstructural,
lifelines, and personnel systems. They defined overall hospital
functionality using a functionality tree, which covered all possible
combinations of the performance levels of the four systems.
Similarly, Jacques et al. (2014) used a fault tree (Lee et al. 2009)
structure to define and calculate hospital functionality, which was
composed of three main components: staff, structure, and stuff.
However, the approaches of Yavari et al. and Jacques et al. do
not clarify how much each system or each component affects
overall hospital functionality, which prevents the development of
component-specific resilience enhancement measures and assess-
ment of optimal quantities of resources prepared for disasters.

Rather than defining hospital functionality directly, some re-
searchers proposed indicators to reflect the overall level of hospital
functionality. Different from indicator-based assessment that uses
sets of indicators, a single indicator is usually used for this purpose.
For instance, waiting time, which is defined as the time between the
receipt of a care request by the hospital and the provision of care to
the patient, is widely used to construct the indicator of hospital
functionality (Cimellaro et al. 2011, Cimellaro and Pique 2016,
Cimellaro et al. 2017). Hospital functionality based on waiting time
can be determined based on Eq. (2) (Cimellaro and Pique 2016)

WT(n, o)

Q) = max(WT(n = n — 1, @) ?

where Q(#) = hospital functionality; WT = waiting time; n = num-
ber of emergency rooms; 1., = total number of emergency rooms in
the emergency department; « = amplification factor of the patient
arrival rate ; and 7 = time. The waiting time can be calculated using
discrete event simulation (DES) models to simulate patient flows
and treatment processes (Cimellaro et al. 2011, Cimellaro and
Pique 2016, Cimellaro et al. 2017). DES models shed new light
on hospital disaster resilience by viewing the hospital as an inte-
grated system rather than a simple aggregation of independent com-
ponents. However, DES models from prior studies bear two major
limitations. First, they were built based on the assumption that a
hospital can remain operational as usual in the aftermath of disas-
ters. In reality, the organizational system and operation can change
significantly during disasters, which consequently lead to changes
in waiting time compared with normal conditions. Hence, such an
assumption inevitably introduces bias into resilience assessment
results. Second, the hospital recovery process, which is one of the
key determinants of resilience (Cimellaro et al. 2010a), was not
considered in studies using DES models.
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Khanmohammadi et al. (2018) built an SD model to calculate
hospital functionality which characterized the dynamics of hospital
operation during an earthquake. In comparison with the aforemen-
tioned DES models, the SD model considers both damage and
recovery processes. An indicator of hospital functionality for resil-
ience assessment was proposed in this study. The indicator is de-
termined by the number of patients waiting to be treated, as shown
in Eq. (3) (Khanmohammadi et al. 2018)

A

o(r) = { P(1)
1 0<P(r)<A

P(t)>A

(3)

where Q(t) = hospital functionality; A = acceptable number of
patients waiting to be treated; and P(f) = number of patients wait-
ing to be treated at time 7. The parameter A can be determined by
hospital administrators based on a set of performance criteria.

The proposed approach of assessing hospital disaster resilience
based on SD modeling provided an inspiring perspective from
which to analyze the lifecycle of hospital functionality during
disasters. However, there were still some limitations in this re-
search. First, utilities such as electricity, water, and gas were simply
aggregated as one type of component in the SD model and named
technical systems, which overlooked the specific effect of each type
of utility on hospital functionality. These utilities, in reality, play
critical roles in supporting hospital functionality (Achour et al.
2014, Vugrin et al. 2015). In-depth analysis of the relationships
between these utilities and hospital functionality will contribute
to more comprehensive identification of hospital vulnerability.
Second, the recovery of the components was considered to depend
only on monetary resources, which was too simplistic and ignored
technical feasibility, causing potential bias in the calculation of re-
covery time and hence overall hospital resilience. Choi et al. (2019)
built an SD model to simulate the operations of an emergency room
and used the serviceability of the emergency room, defined by the
authors, to reflect its functionality. A major limitation of this model,
however, is that it did not consider damage in terms of damages to
hospital buildings and losses of medical staff.

Methodology

Based on the literature review, an appropriate indicator of hospital
functionality after earthquakes and an approach to analyzing both
loss and recovery of functionality after earthquakes are still lacking.
This paper proposes a functionality-based assessment approach to
hospital resilience to earthquakes that involves the following three

interactions are identified. These factors and their interactions

form the basis of the variables and equations in the SD model.
* Simulation and assessment of hospital resilience to earthquakes.

Based on the SD model of hospital functionality, once the initial

values of the variables (i.e., inputs to the SD model) are set, Q(t)

(i.e., the output of the SD model) can be obtained from model

simulations. The inputs include two parts: one describes the

states of the factors affecting Q(#) right after the earthquake;
the other describes the variations in factors affecting Q() over

a certain time span. The former can be used to determine the loss

of Q(t), and the latter can be used to determine the recovery of

Q(t). After Q(¢) is calculated and 7, and t; ¢ are set, resilience to

earthquakes can be assessed based on Eq. (1).

The list just given provides an overview of the methodology
underlying the functionality-based assessment of hospital resilience
to earthquakes in this study. Details will be discussed in the follow-
ing sections. In addition, to support functionality-based assessment
of hospital resilience to earthquakes, a comprehensive review of
prior studies was conducted. Moreover, expert interviews were car-
ried out in Mianzhu, an inland Chinese city, in order to strengthen
the validity of the proposed approach and gather information and
data for an empirical case study. Mianzhu, located in Sichuan
Province, was one of the worst hit cities in the 2008 Sichuan Earth-
quake (also known as the Wenchuan Earthquake) that occurred
on May 12, 2008, with a magnitude of 8.0 (Lu et al. 2012). Most
hospitals in Mianzhu were destroyed in the earthquake and then
reconstructed. The authors conducted a total of four rounds of
interviews between 2017 and 2019. The qualifications of the inter-
viewees are summarized in Table 1.

The first round of interviews (R1), conducted in December
2017, aimed at constructing an indicator of Q(¢). Four senior doc-
tors and three senior nurses, who participated in the medical rescue
in the 2008 Sichuan Earthquake, from four hospitals (one tertiary,
two secondary, and one primary) in Mianzhu were interviewed. The
interviewees were asked to reflect on the scenario of the medical
rescue after the earthquake and provide their opinions on the def-
inition of hospital functionality.

The second round (R2) was conducted in March 2018. Eighteen
respondents, including officials from the local Health Bureau and
the medical staff from five local hospitals (one tertiary, three
secondary, and one primary), were surveyed. They were asked

Table 1. Interviewee qualification

No. of interviewees

) Item Category R1 R2 R3 R4

steps: . . - .

* Quantification of hospital functionality after earthquakes Current title Associate chief physician 3 3 4 3
lie.. O(r) in Eq. (1)]. A quantifiable definition of Q(7) is needed Atending doctor O
which should be able to reflect the desired outcome (Walden Ser;licoi lr(l)l?rire 3 5 0 3
et al. 2015) that the hospital aims to achieve after earthquakes. Nurse 0 1 0 0
In this paper, a new indicator of hospital functionality after Administrative staff 0 4 0 0
earthquakes is proposed based on the literature review and
expert interviews. Years qf 230 years 1 1 1 4

* Modeling of hospital functionality after earthquakes. Given the professmnal 20-29 years > 1 4 3
complexity of hospitals and their risks of being destroyed by experienice 10<_91 ? ey;aslrs (1) ; (1) g
sudden and devastating earthquakes, assessing and predicting =
loss and the recovery via physical experiments can be highly Education Bachelor or above 5 14 7
challenging (Lu and Guan 2017). In this paper, SD modeling, Other 2 7 2 4
a widely used approach to describing accumulation and feed- Worked during Yes 7 15 6 11
back of a complex system using differential equations (Chang earthquakes? No 0 3 0 0
etal. 2017, Wang and Yuan 2017, Leon et al. 2018) is adopted to
model functionality [Q(7)]. Key factors that affect Q(#) and their Total ! 18 6 i
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to evaluate a list of factors the authors had extracted from the liter-
ature that may affect Q(r).

The third round (R3) was conducted in August 2018. Six medi-
cal staff from four hospitals (the same as in R1) were interviewed
and asked to give opinions on the indicator of hospital functionality
and the preliminary SD model of hospital functionality proposed by
the authors.

The fourth round (R4) was conducted in May 2019. Eleven
medical staff from four hospitals (the same as in R1) were inter-
viewed. They were asked to provide opinions on the modified
indicator of hospital functionality and SD model after the R3
interviews. In the meantime, one of the hospitals was chosen for
the case study. The medical staff in this hospital were asked to pro-
vide additional information necessary to construct and run the
SD model.

Indicator of Hospital Functionality after Earthquakes

Hospitals aim to provide complete medical care for the population
(Gilder 1957). However, during emergencies, such as earthquakes,
the focus of their service may change. Although it may not be
possible to find a single indicator that can perfectly represent the
full functionality of hospitals, it is feasible to find one that reflects
the main functionality during earthquakes. During emergencies,
minimizing mortality and morbidity has been seen as a primary
objective of hospital services (West 2001, Hendrickx et al. 2016).
Hospitals are expected to accept and treat as many patients as pos-
sible so as to meet the increasing care needs in disasters (Yi et al.
2010). During the R1 interviews, the medical staff stated that they
tried every means to save lives after the earthquake in spite of tough
medical working conditions. Therefore, the capability of treating
patients is the main functionality of hospitals during earthquakes
and so was used as an indicator of hospital functionality after earth-
quakes in this study.

Per Eq. (1), system functionality should have a value range
from O to 1. The indicator of hospital functionality—the capability
of treating patients—is mathematically defined as the ratio of the
number of patients a hospital is able to treat to the number of pa-
tients the hospital is required to treat over a period, as shown in
Eq. 4):

1 Bi - Ni(t)
Yo Bi - Ni(1)

where Q(#) = hospital functionality; ¢ = time in days; N/(r) =
number of patients with disease i that the hospital is required to
treat on day #; N%(z) = number of patients with disease i that the
hospital is able to treat on day 7 [when N%(¢) > Ni(z), set N¢(t) =
NI(1)]; B; = weight of disease i based on its urgency; and n = num-
ber of disease types considered for medical care during earthquakes.
The variable N () can be set by the hospital or by local health
authorities according to the hospital’s capability and historical data
on patient arrivals during similar disasters; ; can be set by medical
experts.

o(r) = (4)

Factor Identification

A hospital is a complex system whose functionality is subject to
the impact of a variety of factors. In this section, these factors
are first identified from the literature and then discussed in detail.
The major databases and search engines, Web of Science, Google
Scholar, and China National Knowledge Infrastructure (CNKI),
were searched, and academic papers, theses, and working reports
were retrieved. The snowballing method—identifying literature
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Table 2. Factors identified to be influential to hospital functionality after
earthquakes

No. Factor Category Results®
F1 Sufficient medical staff Physical Strongly agree
F2 Sufficient medical supplies Physical Strongly agree
F3 Available medical equipment Physical Strongly agree
F4 Auvailable electricity supply Physical Strongly agree
F5 Available water supply Physical Strongly agree
Fo6 Available telecommunications Physical Strongly agree
F7 Available transportation for Physical Strongly agree
patient transfer
F8 Safe buildings Physical Strongly agree
F9 Sufficient professional knowledge Social Strongly agree
F10  Comprehensive emergency plans Social Strongly agree
F11  Good leadership of hospital Social Strongly agree
administrators
F12  Functional HIS Cyber Strongly agree

“Strongly agree”: average factor score falls within [4.21, 5.00]
(Hansapinyo 2018).

from publications’ reference lists—was also applied. The factors
were divided into three categories based on a trio-space framework
composed of physical, social, and cyber factors proposed by
Kasai et al. (2015). Physical factors were medical resources, util-
ities, and buildings; social factors were professional knowledge of
medical staff, emergency plans, and leadership of hospital admin-
istrators; cyber factors were information and data such as from a
hospital information system (HIS).

During the R2 interviews, after a comprehensive introduction of
the interview goals and the meanings of the factors, the interviewees
were asked to give advice on adjusting the list of factors and state
their opinions on how much these factors affected hospital function-
ality. A questionnaire survey followed the interviews to quantify the
effects of the factors on hospital functionality, using a 5-point Likert
scale from 1 (strongly disagree) to 5 (strongly agree). The average
score for each factor was calculated and evaluated based on the rat-
ing scale proposed by Hansapinyo (2018). The validity of the results
was enhanced by the rich field experience of the interviewees and a
combination of interviews and questionnaire surveys (Khalili et al.
2015). Table 2 summarizes the finalized list of factors, which are
further explained in the following sections.

Medical Resources (Medical Staff, Supplies, and Equipment)
A hospital is unable to function without medical staff. Human re-
sources management is an essential part of hospital emergency
management (WHO 2011, WHO 2015). During emergencies like
disasters, when there is a surge of patients, the shortage of medical
staff can be a critical issue (Ukai 1996, Ochi et al. 2016). Supplies
such as medicine, disinfectant, bandages, oxygen, and beds are also
essential for medical treatment in most cases. During emergencies,
hospital supply and delivery chain continuity plays a critical role in
achieving quality of service and saving lives (WHO 2011, Sabegh
et al. 2017). Medical equipment such as X-rays and magnetic
resonance imaging (MRI) is necessary for diagnosis or treatment.
Operating rooms are also regarded as a type of medical equipment
in this study since they need to be well equipped in order to func-
tion. In addition, the functioning of medical equipment almost
always relies on utilities such as power and water.

Utilities (Power, Water, Telecommunications, and
Transportation)

Power is probably the most important utility because it sup-
ports other utilities such as water and telecommunications

J. Manage. Eng.
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(Beatty et al. 2006). A power failure will result in unavailability of
equipment, loss of lighting, malfunctioning of information systems,
and so forth (Milsten 2000, Beatty et al. 2006, Prudenzi et al.
2017). To prepare for unexpected power outages, hospitals can be
equipped with generators so as to guarantee uninterrupted power
supply. Water also plays an important role in hospitals, as it
supports critical services including surgery preparation; heating,
ventilation, and air conditioning (HAVC); sanitation; dialysis; steri-
lization; and medical equipment cooling (Milsten 2000, Roberson
and Hiltebrand 2010, Welter et al. 2013, Matsumura et al. 2015).
Interruptions of the water supply will significantly disrupt health-
care activities (UK Department of Health 2014). Without water,
hospitals would not be able to function since hygiene and sterili-
zation cannot be guaranteed. Many hospitals store water in tanks or
reserve bottled water in case of supply disruption. However, stored
water cannot solve special water needs such as for dialysis (Klein
et al. 2005), which needs secondary purification by specialized
devices.

Telecommunications and transportation are not direct neces-
sities in medical treatment but may affect the efficiency of health-
care service delivery. Information exchange is important in disaster
rescue (Garshnek and Burkle 1999, Chen et al. 2018). Supple-
menting of medical supplies may be delayed if the telecommuni-
cations are cut off, as happened in Mianzhu in the 2008 Sichuan
earthquake. Although the functioning of telecommunications
systems is beyond the boundaries of hospitals, hospitals can rely
on satellite phones for communication in case of disruptions
(Garshnek and Burkle 1999). Transportation also matters for
the delivery of medical services. Damages to roads and bridges
in earthquakes badly affect the efficiency of patient transfer as well
as emergency logistics (Ukai 1997, Caunhye et al. 2012). While
road conditions are also out of their control, hospitals are supposed
to have vehicles (e.g., ambulances) to ensure successful patient
transfer.

Buildings

Hospital buildings always need to be available so the medical
staff can perform treatment and patients can be protected. In
Mianzhu, hospital buildings were structurally damaged in the
2008 Sichuan Earthquake and were hence unsafe to enter. The
medical staff had to work outdoors, where hygienic conditions
could not be guaranteed. Although they moved to tents and port-
able dwellings several days later, the medical staff argued that
these were all provided by the government as the hospitals them-
selves were not able to prepare enough tents or portable dwellings
in advance.

Social and Cyber Factors

Professional knowledge of disaster medical rescue is one of the
basic requirements of disaster medical responders (King et al.
2019). The interviewees argued that a lack of knowledge in dis-
aster medicine resulted in the inefficient performance of the medi-
cal staff in the face of the 2008 Sichuan Earthquake. To improve
the performance of medical staff during disasters, it is important

Hence, N¥(¢) can be calculated using Eq. (5) as follows:

to provide them with routine training (WHO 2011, Zhong et al.

2015). A comprehensive emergency plan that prespecifies how

each department of the hospital should respond in emergencies

contributes to the preparedness of hospitals in coping with disas-
ters (WHO 2015). However, the interviewees argued that effective
implementation of emergency plans was more important—

“Without implementation, emergency plans are just pieces of

paper.” Good leadership by hospital administrators is key to en-

suring the efficient operation of hospitals during emergencies

(Richardson et al. 2013, WHO 2015). According to the interview-

ees, there was chaos in the operation of Mianzhu hospitals in the

immediate aftermath of the 2008 Sichuan Earthquake due to an
apparent lack of leadership.

As for cyber factors, the HIS has been an indispensable part of
modern hospitals. It supports hospital affairs and helps to increase
efficiency and reduce errors in medical service (Handayani et al.
2017, Handayani et al. 2018). The HIS is also subject to damages
during earthquakes. According to the R2 interviewees, the HIS is
not a must for treating patients since it can be replaced by labor;
however, in that case the working efficiency of medical staff is
significantly impacted.

Based on the discussions just presented, some simplifications
and hypotheses are offered in order to quantify N?¢(¢) in Eq. (4)
and ultimately to quantify Q(z).

e Only treatment in the hospital is considered; prehospital care
is not.

* Once a patient receives treatment, he or she is considered cured
and released.

* Medical staff, medical supplies, and medical equipment for the
treatment of each disease are independent of each other, which
means that staff, supplies, and equipment are disease-specific
and cannot be shared across diseases.

* Power is considered to affect medical treatment in two ways,
namely supporting lighting, which is considered necessary
for treatment at night and supporting medical equipment such
as X-rays, MRI, and operating rooms.

* Drinking water, which does not need secondary purification, is
considered necessary for all treatment. Purified water from spe-
cialized devices, which rely on power, is only needed for some
medical equipment such as dialysis machines.

e Telecommunications and transportation affect medical treatment
indirectly—for example, by affecting patient transfer and the
rate of supplementing medical supplies.

* Buildings are necessary for all treatment activities.

* Social factors affect medical treatment indirectly through other
impact factors: professional knowledge affects medical staff
service capacity (the maximum number of patients that can be
treated); emergency plans affect the recovery rate of physical
factors; leadership of hospital administrators affects the imple-
mentation of emergency plans.

e The cyber factor (i.e., the HIS) affects the service capacity of
medical staff.

Ni (1) = min{[S77 ()] i [Suf (O ins [EF (0)]in} - PL(1) - W (1) - B(7)

i
(S (1) min = min[Se, (2), ... Sz,

[Suf ()] in = min[Suf (1), ..., Suf,(1), ...
[E?(t)]min = IIllIl[E?l t)’ .
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Fig. 2. Overall structure of the SD-HFE.
where St{ (¢), Suf ,(¢), and E{ (t) = service capacity of each type Supplement rate of
of medical staff, supplies, and equipment, respectively, for disease i — medical staff (A)
Number o

on day f; ng, ng,, and ny = number of types of medical staff,
supplies, and equipment, respectively; P; () = power supply for
lighting [given that lighting power is only necessary for treatment
at night, so P;(z) = 1 when power is available for lighting and
P; (t) = 0.7 when power is not available]; W (¢) = drinking water
supply (binary: 1 when drinking water is available; O when unavail-
able); and B(t) = availability of hospital buildings, equal to the per-
centage of residual capacity of the buildings after earthquakes.
SD Modeling. Once the value variations in the factors in Eq. (5)
over time are obtained, Q(7) can be obtained using Egs. (4) and (5).
However, as aforementioned, some of these factors interact and
their values are correlated in complicated, nonlinear relationships.
Therefore, the value variations in the factors are essentially a type
of emergent property that cannot be predicted only by examining
individual factors. The relationships of the factors play a fundamen-
tal role in determining the factors’ values and therefore must also be
considered. In order to model these factor dynamics and interac-
tions, from which important inputs for calculating Q(t) can be ob-
tained, an SD model of hospital functionality after earthquakes
(SD-HFE) is proposed in this study. In the process of model devel-
opment, the SD-HFE was revised and finalized by experts through
two rounds of interviews (R3 and R4).

The structure of the SD-HFE is split into multiple parts shown
in different figures for readability; among these Fig. 2 shows the
high-level causal loops of the model (i.e., the overall structure of
the model), while Figs. 3-9 show details of those causal loops
(i.e., parts of the model). Variables in all figures follow the same
naming convention, and the variables that appear in multiple
figures are the proxies through which different parts of the model
interact. Disease A is used as an example in these figures for
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brevity. The overall structure of the SD-HFE is developed based
on the following logic: after an earthquake, patients arrive at hos-
pitals and are first triaged by disease type. Patients with different
types of disease are treated separately. Those who have received
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treatment are cured and released from the hospital. Some patients
waiting to be treated are transferred to other healthcare facilities by
ambulance and some, who die during the waiting, are sent to
morgues (Cimellaro et al. 2017). In the SD-HFE, two types of
medical supplies are considered: medical consumables and beds.
Consumables, such as medicine, bandages, and oxygen, can be
consumed and supplemented, while beds are reusable. According
to Eq. (5), treatment of patients relies on “Service capacity of
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Fig. 9. Dynamics of hospital buildings, social factors, and cyber
factors.

medical staff,” “Service capacity of medical consumables,” “Num-
ber of available beds,” “Service capacity of medical equipment,”
“Power supply for lighting,” “Drinking water supply,” and “Avail-
ability of building.”

Figs. 36 illustrate the dynamics of different medical resources,
including medical staff, medical consumables, beds, and medical
equipment, respectively. Specifically, “Service capacity of medical
staff” depends on both “Number of medical staff”” and “Full service
capacity per medical staff.” “Service capacity of medical staft” is
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also affected by “Availability of HIS” and staff “Knowledge of dis-
aster medicine” (Fig. 3). “Number of medical staff” may decrease
due to staff deaths and injuries caused by the earthquake. Medical
consumables are consumed while patients are being treated. They
can be supplemented, and the supplement rate is affected by “Road
state,” “Availability of communication,” and “Emergency plan ef-
fect” (Fig. 4). In Fig. 5, the dynamics of beds mainly depend on
“Hospitalization rate” and “Discharge rate” of the patients who
receive treatment. Beds can also be supplemented if they are not
adequate. In addition, medical equipment (Fig. 6) may suffer
damage during earthquakes and lose availability. “Service capacity
of medical equipment” is affected by “Medical water supply” and
“Power supply,” which support the operation of medical equip-
ment, and also affected by “Rate of equipment usage” and “Full
service capacity of medical equipment.”

With regard to utilities, two parts are considered: municipal
(Fig. 7), which is beyond the boundaries of hospitals, and hospital
(Fig. 8), which is within the boundaries of hospitals. The municipal
part includes roads, telecommunications, municipal power, and
municipal water; the hospital part includes ambulances, satellite
telephones, power generators, fuel, and stored water. Each munici-
pal utility has a “state” to describe its availability, which then
determines its serviceability. Utility states may be worsened and
their availability may be lost because of the earthquake, but they
may also be improved after recovery measures are taken. For
municipal water and telecommunications, their availability also
relies on the availability of municipal power supply (Fig. 7). As
aforementioned, power and water in the hospital mainly depend
on municipal supply, while the hospital can also prepare power gen-
eration equipment and store water in case of accidents (Fig. 8).
“Generator power supply” relies on both “Generators” and “Fuel
storage,” which can be consumed and supplemented. In addition,
electric power generation requires water for cooling (Vugrin et al.
2015). Stored water, as another source of “Drinking water supply”
in the hospital, can also be consumed and supplemented by the
hospital. “Medical water supply” relies on both “Drinking water
supply”” and “Power supply” as power is needed to run the purifi-
cation equipment.

Fig. 9 shows the dynamics of hospital buildings, social factors,
and cyber factors. The state of buildings determines their availabil-
ity, which can be recovered by repair or reconstruction. “Availabil-
ity of HIS” depends on “Power supply.” The HIS is also equipped
with an uninterrupted power supply (UPS). “Recovery rate of HIS”
is considered to depend on “Recovery rate of building” where it is
installed. For social factors, medical staff’s “Knowledge of disaster
medicine” can be improved by “Training,” and “Emergency plan
effect,” which can affect the recovery rate of some physical factors
as aforementioned, is related to “Comprehensiveness of emergency
plans” and “Leadership” of hospital administrators.

The relationships among different factors can be classified as
two types: one-way, in which one factor is affected by another;
and interactive, in which two factors are affected by each other.
For one-way relationships, one example is that transportation
condition affects the supplementing of medical consumables,
which is modeled by the relationship between ‘“Road state” (Fig. 7)
and “Supplement rate of medical consumables” (Fig. 4); another
example is that “Emergency plan effect” (Fig. 9) affects the recov-
ery rates of some physical factors such as medical staff (Fig. 3),
medical consumables (Fig. 4), medical beds (Fig. 5), medical
equipment (Fig. 6), and fuel and stored water (Fig. 8), as the re-
covery processes of the factors are usually prespecified in hospital
emergency plans. As for interactions, one example is that two types
of utilities, power and water, interact, where “Municipal power sup-
ply,” as one source of “Power supply,” affects “Municipal water
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supply” and further affects “Drinking water supply” (Fig. 7); con-
versely, “Drinking water supply” affects “Generator power supply”
(Fig. 8), which is another source of “Power supply.” Some factors
and treatment activity also interact. For instance, “Service capacity
of medical consumables” (Fig. 4) and “Number of available beds”
(Fig. 5) contribute to “Treatment rate” of patients (Figs. 4 and 5),
which in turn determines “Consumption rate of medical consum-
ables” (Fig. 4) and “Beds occupying rate” (Fig. 5).

Simulation of the SD-HFE and Assessment of Hospital
Resilience to Earthquakes. Inputs are needed to run the SD-
HFE. As aforementioned, they include those describing the states
of factors right after the earthquake, which depend on potential loss
or damage to the factors, and those describing the variations in fac-
tors over time. Potential methods to determine the inputs are given
in this section. FEMA (2012a) has published the FEMA-P58 meth-
odology for seismic performance assessment of buildings as well as
an electronic calculation tool called PACT for implementing the
methodology. By inputting data on building information (story
height, area, etc.), occupancy, component fragilities, earthquake
scenario, and so forth, PACT is able to perform loss calculations
including repair cost, downtime, and casualty estimates (FEMA
2012b). Hence, medical staff casualties and hospital building losses
can be obtained using PACT. PACT can also potentially be used to
determine the loss of components in the hospital building such as
medical supplies, medical equipment, hospital utilities, and the HIS
once their fragility data are obtained. With regard to the recovery of
these factors, the supplementing of medical staff, medical supplies,
fuel for generators, and drinking water, as well as the recovery of
medical equipment, can be estimated according to interviews with
the hospital staff. The time needed for retrofitting the hospital
building can be obtained using PACT. In addition, loss and recov-
ery rates of municipal utilities can be estimated using Hazus—MH
2.1, which was also developed by FEMA (2018), if required data
are made available. For social factors, the variables in the model can
be set according to experts’ opinions collected in interviews. The
profile data of the hospital, such as the initial number of medical
staff, initial service capacity of medical supplies, and so on, can be
obtained through surveys. Inputs that require medical knowledge
and historical experience, such as patient arrivals, death rates, hos-
pitalization rates, discharge rates, and so on, can be estimated by
experts.

When the simulation is performed using the SD-HFE, the var-
iables in the model vary over time. The variable N%(¢) can be ob-
tained based on Eq. (5) and then Q(¢) can be calculated based on
Eq. (4). Setting ¢, as the time when the earthquake occurs and #; ¢
as a time window of interest, the hospital’s resilience to earthquakes
can be obtained based on Eq. (1).

Case Study

A case study was carried out using the proposed approach to
quantify the resilience of a tertiary hospital in Mianzhu. The hos-
pital, located in the city center, had 686 beds with annual patient
arrivals of around 0.70 million. The hospital building, recon-
structed after the 2008 Sichuan Earthquake, had 12 floors. The
pharmacy was located on the first floor and the operating rooms
were located on the fourth floor. The simulation scenario assumed
that the reconstructed hospital suffered an earthquake similar to the
2008 Sichuan Earthquake at the present time. All data that were
needed as inputs to the SD-HFE were obtained in the R4 inter-
views. The ground motion data of the 2008 Sichuan Earthquake
with a peak ground acceleration of 6.33 m/s> were used in this
case study.
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Table 3. Lookup table for SD-HFE inputs in the case study

Damage state of the targeted floor (%)

Model input None Slight Moderate Extensive Complete
Loss of medical consumables 0 5 10 50 90
Loss of beds 0 0 20 60 100
Auvailability of operating rooms 100 100 0 0 0
HIS state 100 0 0 0 0
Availability of floor 100 80 0 0 0

Residual “Number of medical staff” was set by taking into con-
sideration medical staff casualties estimated using PACT. It was
assumed that all medical staff were working in the hospital when
the earthquake occurred and hence there was no supplement of
medical staff. Due to a lack of fragility data necessary for damage
analysis in PACT, the loss of medical supplies and damage to medi-
cal equipment and the HIS were estimated based on the damage
state of the hospital building, and it was assumed that there was
no damage to hospital utilities. Using the method proposed by
Xiong et al. (2016), the damage state (none, slight, moderate, ex-
tensive, or complete) of each floor of the hospital under the ground
motion was obtained. Then the loss or availability of the these com-
ponents was estimated according to the damage state of the targeted
floor using a lookup table (Table 3) developed by the authors. For
loss or availability estimation of medical consumables, beds, oper-
ating rooms, and the HIS, the targeted floor in Table 3 was the floor
where the pharmacies, wards, operating rooms, and HIS were lo-
cated. The availability of the building equaled the ratio of residual
availability of floors. “Supplementary rate of medical consum-
ables” was estimated based on data collected in the R4 interviews,
which were adjusted according to “Road state,” “Availability of
communication,” and “Emergency plan effect”; the recovery rates
of hospital utilities were assumed or estimated by the interviewees;
“Recovery rate of building” was set based on the building repair
time estimated using PACT, and the repair process was assumed
to be linear; the operating rooms and the HIS were considered fully
recovered when the hospital building was fully recovered.

Since data required by Hazus—-MH 2.1 for analyzing the dam-
age and recovery of municipal utilities were not available, the
damage and recovery rates were set as the actual rates observed
in the 2008 Sichuan Earthquake and reported in the interviews.
This may have led to somewhat conservative assessment results
because after the 2008 Sichuan Earthquake there was a huge in-
vestment on the overall capability of the Mianzhu to cope with
earthquake. Therefore, current municipal utilities should be more
resilient to earthquakes than they were in 2008. Four disease types
considered in the case study: Disease A (minor trauma like abra-
sion), Disease B (severe trauma like fractures and brain injuries),
Disease C (upper respiratory infection and enteritis), and Disease
D (others) (Liu et al. 2008). Their weights [(3; in Eq. (4)] were set
by the average death rate for each type. Operations were necessary
only for all patients with Disease B and 10% of patients with
Disease D, according to the interviews. Patient arrivals with differ-
ent diseases after the earthquake were set after scaling the data
from the 2008 Sichuan Earthquake according to annual patient
arrivals. For each hospital, N7(z) was set according to the daily
service capacity of the current medical resources. Gaussian noise
was introduced to reflect the fluctuations in service capacity of
the medical resources. Table S1 summarizes the main inputs
for the calculation of hospital functionality in the case study, and
Table S2 provides the system dynamics equations used in the case
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study. The SD-HFE was run in Anylogic 8.4.0 PLE. The results
are reported in the next section.

Results

Fig. 10 illustrates the functionality curve of the case hospital in
Mianzhu. The curve reflects a pattern of “first decreasing and then
recovering.” Immediately after the earthquake (Day 0), QO(r)
dropped to 0.65, mainly because of the loss of hospital building
serviceability. In the meantime, a municipal power failure was
caused by the earthquake. Although the hospital was equipped with
power generators, the stored diesel fuel was only enough for one
day. Hence, Q() fell to 0.26 at the end of Day 1 but bounced back
when municipal power was restored on Day 2. Then Q(7) began to
increase gradually as measures were being taken to repair the
hospital building. Since Day 19 when the hospital building was
fully recovered, Q(r) generally remained stable at 1.00 with slight
fluctuations caused by the Gaussian noise introduced to the SD-
HEE. Setting #, as the day when the earthquake happened and
17 c as 60 days when the distribution of diseases after the earthquake
tended to be stable (Liu et al. 2008), the resilience level of the
hospital using the SD-HFE was calculated as 0.91 based on Eq. (1).

In order to further explore the reasons behind variations in the
functionality curves, the performance [Per(t)] of the hospital was
assessed per each disease; in other words, N¢(¢)/N!(t) was calcu-
lated for each value of variable i. The results are depicted in Fig. 11.
As can be seen in the figure, after the earthquake (Day 0), Per(t)
for Diseases A, B, C, and D fell to 0.68, 0.80, 0.90, and 0.41, re-
spectively. The differences in performance were due to the different
initial service capacity of the medical resources. On Day 1, when
there was no lighting due to power outage after the generators ran
out of fuel, the performance of the hospital for all diseases signifi-
cantly dropped. Thus, Per(t) for Disease B fell to 0 and Per(t) for
Disease D fell to 0.29, as the operating rooms were not available
due to the power failure. On Day 2, Per(z) for all diseases bounced
back when the municipal power was restored, which was consistent
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Fig. 10. Hospital functionality curve.
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Fig. 11. Treatment performance for Diseases A, B, C, and D.

with the trend of Q(¢) in Fig. 10. On Day 4, a decrease of Per(r) for
Disease B was observed and attributed to the deficiency of medical
consumables, which only lasted for one day as more medical con-
sumables were supplemented. From Day 4, there was a significant
drop in Per(r) for Disease C, when the hospital received an increas-
ing number of patients and ran out of beds. However, as the occu-
pied beds were gradually released and the building was being
restored, Per(t) for Disease C went back up over time. Never-
theless, the decrease in Q(#) from Day 4 was not very obvious be-
cause Per(t) for Diseases A and D kept increasing with the
recovery of the building from Day 2, when municipal power was
recovered, which neutralized the effects of the decrease in Per(t)
for Diseases B and C. As shown in Fig. 11, Per(t) for Disease B
was fully recovered on Day 13 rather than on Day 19, when the
building was fully recovered, because the storage of medical re-
sources for Disease B was higher than actually needed and so
Per(1) for Disease B could be relatively high and recovered earlier
in spite of the impact of the damaged building. In addition, Per(r)
for Disease D was generally the lowest among all four curves be-
cause it was mainly restricted by the service capacity of medical
staff, which fell 50% due to the unavailability of the HIS. However,
on Day 19, when both the HIS and the service capacity of medical
staff were recovered, Per(t) for Disease D bounced back to around
1.00, which contributed to the full recovery of Q(r) on the
same day.

The results of the case study were provided for three experts
in Mianzhu who had participated in the aforementioned inter-
views, including one associate chief physician and one senior nurse
from the case hospital and one administrator from the local Heath
Bureau. The experts all commented that the results were in line with
their expectations and well reflected the behavior of the hospital
after earthquakes.
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Discussion

Extreme Condition Test

In order to ensure that the SD-HFE was structurally valid, extreme
condition tests were conducted. The variable inputs to the model
were individually set to zero or infinite (around 10,000 times larger
than other variable inputs) to examine the behavior of the model
under various extreme conditions. The results of the extreme con-
ditions tests showed that the SD-HFE behaved as expected. In this
section, two tests are given as examples. Condition 1 assumed that
the roads around the hospital were totally impassable and that “Re-
covery rate of roads” was zero; other conditions were unchanged
compared with the case study. Under such conditions, the hospital
had no access to supplemental medical supplies and could not
transfer patients to other locations (patient arrivals were considered
unaffected by “Road state”). Condition 2 assumed that “Recovery
rate of municipal power” was zero, which indicated that municipal
power would be continuously unavailable due to earthquake dam-
age. The results of the case study served as a reference (marked as
Condition 0). Fig. 12 illustrates the results of the two tests. Under
Condition 1, for the first two days Q() was not impacted compared
to Condition 0 due to the initial storage of medical consumables.
However, when the hospital was running out of medical consum-
ables, Q(t) began to decrease. The first decreases occurred on Days
4 and 5 when medical consumables for Disease B were running out;
the second decreases occurred on Days 6 and 7, when medical con-
sumables for Disease C were running out; the third decreases oc-
curred on Days 20 and 21, when medical consumables for Disease
D were running out. After that, Q(¢) kept decreasing as medical
consumables for Disease A were consumed. Under Condition 2,
unlike Condition 0, Q(#) did not bounce back on Day 2 because

Condition 0

— ——- Condition 1

_________ Condition 2
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Fig. 12. Results of extreme condition test.
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municipal power was not recovered. As power affected Q(7)
through access to lighting and medical equipment, the hospital
was able to maintain a low level of functionality because treatment
activities which did not rely on medical equipment and happened in
the daytime were not affected. However, municipal power supply
was also essential to municipal water supply, which in turn deter-
mined whether the hospital would have access to drinking water
that was critical to Q(#). Thus, from the curve in Condition 2, it
can be seen that Q(7) was kept at around 0.25 due to the storage
of drinking water until Day 7, when the stored drinking water ran
out and Q() fell to zero. This curve of Q(¢) also reflected the in-
teractions among utilities.

Adaptation of the Hospital

During the 2008 Sichuan Earthquake, the case hospital was se-
verely damaged. Power and water were cut off for days and almost
all functional departments were unavailable. The medical staff the
authors talked to during the R4 interviews were asked to recall and
estimate Q(¢) for the case hospital after the earthquake. In order to
facilitate their understanding of Q(7), it was simplified as “the per-
centage of patients the hospital was able to treat.” It should be noted
that such a simplification ignored the weights of diseases [i.e., 3; in
Eq. (4)]. According to the interviewees, the patients they were not
able to treat were usually those with life-threatening diseases. The
weights of these diseases were supposed to be high because [3; was
set based on the death rate associated with the diseases in the case
study. Hence, Q(r) was overestimated. The interviewees indicated
that Q(r) showed three obvious stages, including treatment on site,
treatment in tents, and treatment in portable dwellings, where Q(7)
was about 0.40, 0.60, and 0.90, respectively, as shown in Fig. 13.
Around two years later, when the hospital was reconstructed and
put into use, Q(#) recovered to 1.00 (not shown in Fig. 13). Setting
to as the day of the earthquake and #; - as 60 days, the hospital’s
level of resilience to the 2008 Sichuan Earthquake was calculated
as 0.61 based on Eq. (1).

In Fig. 13, both curves had significant decreases in the first few
days after the earthquake, which were mainly caused by the failure
of utilities like power and water and municipal utility damage, and
recovery rate inputs were set to be the same as in the year 2008.
Nevertheless, the decrease in Q() in the case study had a one-day
lag due to the implementation of power generators in the hospital.
Moreover, the current hospital building suffered much less damage
in the case study than in 2008, contributing to fewer medical staff
casualties and less loss of or damage to medical supplies and equip-
ment. This in turn contributed to less loss of Q(z) and a higher
resilience level. Such results echoed the feedback collected during
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the R4 interviews. The medical staff in the hospital suggested that
they had been much more prepared to cope with earthquakes than
before—with a more robust building and more stored supplies.
They were quite sure that the hospital would perform much better
were an earthquake like that in 2008 to occur.

According to Eq. (4), O(r) depends not only on N¥(r) but also
on N’(t), the latter of which reflects the expected serviceability of
the hospital. This is related to the hospital’s resources. Obviously, a
tertiary hospital is required to serve more people and handle more
diseases than a primary hospital. From the year 2008 to the present
time, the case hospital has become a tertiary hospital with an annual
patient arrival of around 0.70 million from a secondary hospital
with an annual patient arrival of around 10,000. The current N/(¢)
is much higher than that in 2008. Therefore, the resilience level of
the hospital has increased by 49%, from 0.61 to 0.91, since then,
while the number of patients the hospital is able to treat has in-
creased by an even much larger percentage.

Policy Sensitivity Test

In the case study, the decreases in Q(¢) were mainly due to three
issues: power failure, deficiency of beds, and loss of serviceability
of the hospital building. The authors tested the effectiveness of
three policies that were supposed to address these issues using the
SD-HFE: Policy 1—the hospital reserves twice as much fuel as it
does now; Policy 2—the hospital shifts 40 beds from the depart-
ments for Disease C to the departments for Disease D after the
earthquake; and Policy 3—the hospital shortens the recovery time
of the building from 19 to 10 days by hiring more workers.
The inputs to the model were adjusted according to each policy.
The effects of the three policies based on simulation results are
illustrated in Fig. 14, where the result of the case study are also
shown as Policy 0.

Fig. 14 shows the effectiveness of the policies, which overall
improved Q(t). Policy 1’s effectiveness indicated that a higher stor-
age of fuel did work to avoid the abrupt loss of Q(¢) caused by
municipal power failure. However, a new drop in Q(#) occurred
on Day 3. By backtracking the variables in the SD-HFE, it was
found that medical consumables for Disease B happened to be
deficient on Day 3 because they were consumed faster when the
power was uninterrupted from the beginning. Such deficiency
caused the drop. Hence, Policy 1 should be accompanied by another
policy of enhancing the storage of medical consumables for Disease
B so as to better improve Q(¢). Policy 2’s effectiveness indicated
that proper distribution of medical supplies in different departments
of the hospital was also important to enhance resilience to earth-
quakes. However, such a distribution is disease-specific and the
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Fig. 13. Adaptation of the hospital.
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Fig. 14. Results of policy sensitivity test.

distribution for earthquakes might not work for other disasters
if the distribution of diseases caused by the disaster were different.
Policy 3’s effectiveness indicated that a higher hospital building re-
covery rate would contribute to a higher recovery rate of Q(r),
which was as expected. Nevertheless, it should be noted that the
purpose of the policy test was to demonstrate the feasibility of using
the SD-HFE to assess the effectiveness of possible resilience en-
hancement policies rather than to develop feasible or optimal resil-
ience enhancement policies. Hence, some factors, such as structural
repair and reconstruction activities that may potentially cause inter-
ruptions to medical operations, were not considered in the policy
test. Overall, Q(t) calculated that the SD-HFE was sensitive to the
proposed policies, and that the evolution of Q(¢) under the three
polices was headed for the same trend, which proved the reliability
of the SD-HFE (Jiang et al. 2015).

Conclusions

This research proposed a new functionality-based assessment
approach to quantifying hospital resilience to earthquakes. A new
indicator of hospital functionality was proposed and the SD-HFE
was developed to simulate and compute hospital functionality after
earthquakes, considering both the hospital’s damages and its recov-
ery processes. The validity of the approach was tested using a case
study of a hospital in China. The proposed approach can contribute
to analyzing the evolution of hospital functionality after an earth-
quake and assessing hospital earthquake resilience. Moreover, the
approach can serve as a tool for decision makers in identifying
weaknesses in hospital earthquake resilience and comparing the
effectiveness of different resilience enhancement measures so as
to propose targeted solutions.

While the proposed approach is a promising tool, it has limita-
tions that should be acknowledged. A few assumptions were made
for the approach. Some of them may be strict. For instance, medical
resources (staff, supplies, and equipment) for the treatment of each
disease are considered independent of each other. In fact, different
diseases may require common medical resources and hospitals
themselves may arrange their medical resources flexibly so as to
maximize their functionalities in emergencies. Future research
should look into the correlation of medical resources needed in
the treatment of different diseases, which may require more domain
knowledge in medicine and pharmacy. Moreover, there can be
other potential factors that may affect hospital functionality after
earthquakes in addition to those identified in the SD-HFE. These
factors can be identified and examined in future research for
further improvement of the SD-HFE. For a practical assessment
of hospital resilience, consideration of the uncertainties in
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earthquake occurrence as well as intensity is suggested. In addition,
while the feasibility of the proposed approach in comparing the
effectiveness of resilience enhancement policies has been demon-
strated, how to develop or optimize these policies, which should
consider costs, feasibility, and interactions, is worth investigation
in future research.
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