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a b s t r a c t 

Urban lifeline systems play vital roles in sustaining fundamental functionalities in urban 

areas. These systems, working collaboratively and synergistically, form a complex system 

of systems, in which disruptions in one system can rapidly propagate to others, posing a 

great challenge for the identification and protection of critical infrastructure facilities. This 

study introduces a new criticality assessment approach of interdependent lifeline systems. 

Given a weighted directed network of infrastructure systems, the proposed approach calcu- 

lates vertex criticality through the biased PageRank algorithm: compared with the original 

PageRank algorithm, the biased one utilizes a personalization vector (in this context, ver- 

tex functional importance) in the process of criticality measurement. This algorithm design 

fulfils an integration of both network topology and function, and can comprehensively mea- 

sure vertex criticality. To consider the impact of cascading failure, this criticality assessment 

method also adopts a linear combination form to take into account the criticality of child 

vertices using conditional probabilities as parameters. A case study is conducted on five 

real lifeline systems in a middle-sized county in China with over 300,000 inhabitants. Based 

on the case study model, targeted vertex attacks are carried out to illustrate the validity 

and effectiveness of this criticality measurement. Examining both network topological and 

function response, resulting curves show that the criticality ranking calculated with the 

proposed approach is better to reflect component topological and functional importance 

compared to other commonly used metrics. The main contribution of this study to the body 

of knowledge is the proposition of a new approach for criticality assessment of facilities in 

interdependent infrastructure systems under disaster scenarios, which provides a useful 

and intuitive guide for decision making process with regards to pre-disaster infrastructure 

protection. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

ritical Infrastructures (CIs) underpin every aspect of urban 

ife by providing essential services [1,2] . According to the 
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resident’s Commission on Critical Infrastructure Protection 

PCCIP), CI is defined as ‘a network of independent, mostly 
rivately-owned, manmade systems and processes that 
unction collaboratively and synergistically to produce and 

istribute a continuous flow of essential goods and services’ 
3] . Due to the rapid urbanization that has been witnessed 

orldwide in the past decades, urban systems are becom- 
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Nomenclature 

G ( V, E ) the set of vertices and edges 
V the set of vertices 
E the set of edges 
n number of vertices 
Q ij real flow from vertex V i to V j 

W i weight (functional importance) of vertex V i 

W weight vector of all vertices 
d damping factor 
k i out degree of vertex V i 

A transmission matrix of the biased PageRank al- 
gorithm 

ā i j elements of transmission matrix 
PR i PR value of vertex V i 

PR i ( t ) t step iterative result for vertex V i in the biased 

PageRank algorithm 

θ i | j conditional probability of the failure of vertex 
V i given the failure of vertex V j 

C _ P R i cascading PR value of vertex V i 

d ij the length of the shortest path from vertex V i to 
V j 

c ij flow capacity from vertex V i to V j 

w i vertex capacity of vertex V i 

f ij Pseudo-flow from vertex V i to V j 

u i waste of vertex V i 

ing ever-increasingly interdependent on each other, forming a
large-scale complex system. These highly interconnected CIs
show great vulnerability and sensitivity toward disruptions of
their components [4] , as the disruptions may propagate across
CIs, which leads to cascading failures and causes functional
breakdown of an entire city [5,6] . 

Cascading failures are not uncommon, and their destruc-
tive influence has been witnessed in numerous major disas-
ters. For instance, the 2005 Hurricane Katrina caused severe
destruction along the Gulf Coast of the United States. As a
consequence of inadequate preparation for such catastrophic
disruption to interdependent critical infrastructures and as-
sociated industries, the hurricane became ‘the most destruc-
tive natural calamity in US history’ [7] , which destroyed the
Gulf Coast’s highways and oil supply infrastructure, flooded
cities, and left an estimated three million people short of elec-
tricity supply. Similarly, the 2008 Chinese winter storm, rag-
ing throughout Southern China in mid-January, caused di-
rect economic losses of 110 billion RMB and made 6.5 million
people homeless for several weeks. The storm destroyed nu-
merous transportation and electric power facilities in South-
ern China, and further disrupted countless interdependent
infrastructures. Take Chenzhou, an economic and cultural
center of Hunan Province, as an example. Due to cascading
failures starting from the electric and water supplies that were
directly paralyzed by the storm, people in this city experienced
a complete cutoff of most public services including heating,
telecommunications, public transportation, banking and fi-
nance for over ten days. 

A critical job in urban disaster mitigation and prevention
is to protect CIs to reduce potential hazard damage. Due to
limited resources, infrastructure protection should be focused
on facilities with high criticality. However, the inherent com-
plexity among CIs poses great challenges for facility critical-
ity measurement [8,9] . First, topology and function of CIs are
so complex and not uniform that pure topological or func-
tional metrics cannot fully represent the whole picture of in-
frastructure facility operation. Second, interdependent CI is
regarded as a complex system, and thus problems within it
cannot be separately studied on any single component [10] .
The study presented in this paper proposes a new CI criti-
cality assessment approach, featured by a biased PageRank
algorithm given a multilayer weighted directed network as
an input, for lifeline systems that have a technological net-
work nature. This algorithm provides an effective and intu-
itive method, which emphasizes not only network topology
but also network flow/performance, to evaluate infrastructure
facility importance in maintaining network robustness after
disruptions, and thus can be used to support the decision
making in disaster mitigation practice. 

The remainder of this paper is organized as follows.
Section 2 reviews prior studies and discusses current research
gaps, and outlines the proposed approach. Sections 3 and
4 provide details of criticality assessment and disruption sim-
ulation approach. Section 5 presents a case study of a middle-
sized county in Southern China using the proposed approach.
Section 6 summarizes findings, and discusses research limita-
tions and future directions. All variables throughout this paper
are summarized in the Nomenclature. 

2. Literature review 

The emergence of the research into infrastructure interde-
pendencies is relatively recent [11,12] , with the first known
research systematically examining this concept published
in 2001 [10] . Ever since, various modeling approaches have
been explored to study interdependencies and to conduct re-
silience related analysis. Since many complex systems are
really organized in the form of network structure, a ma-
jor portion of these modeling approaches adopts network
paradigm [13] . Compared with other modeling paradigms
(e.g., agent-based modeling, system dynamics modeling, and
input-output based modeling), network based models have
advantages of being computationally inexpensive, intuitively
explainable, and able to model different types (i.e., phys-
ical, cyber, geographical, and logical) of interdependencies
[14–16] . 

With infrastructure systems encoded as networks,
facilities/assets are represented mathematically as ver-
tices while interactions between pairs of facilities/assets as
edges [17] . For instance, vertices could represent substations
in electric power system and water treatment plants in
water supply system, while edges could represent transmis-
sion lines and pipelines respectively [18] . Based on network
theory regarding network flow, optimization, and connec-
tivity, network models have been built mainly for technical
infrastructure systems, such as water distribution and elec-
tric power systems [6,12,19,20] , internet and electric power
systems [5] , electric power and telecommunications systems
[1,21] , and gas pipeline and electric power systems [22] . 
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Exploiting these network models, many researchers have 
nalyzed how the networks respond in a relatively short pe- 
iod of time after different forms of attacks [21] . Some stud- 
es adopted random vertex removals [1,18,23,24] . Zhang et al.
25] pointed out that targeted attack causes more damage to 
nterdependent networks than does random attack. Differ- 
nt from random one, targeted attack is simulated by remov- 
ng vertices with largest degree, betweenness, centrality, and 

ther topological metrics to simulate worst-case disruptions 
nd examine network short-time response [1,6,26–31] . Among 
hese studies, some conducted vertex removals on general 
etworks to explore network properties from the perspective 
f graph theory and network science perspective. To mention 

wo of them, Zhang et al. [30] examined the effect of inter- 
ependent network size on cascading failure and network ro- 
ustness, under targeted attacks based on vertex betweenness 
n random scale-free networks; Huang et al. [24] analyzed 

rdos–Renyi and scale-free networks and discovered that pro- 
ection of highly connected vertices (i.e., those with high 

egrees) is beneficial to network robustness improvement.
owever, as Grubesic et al. [32] and Holme et al. [33] argued,

ew real CIs bear resemblance to the theoretical and general 
etwork models, suggesting these models cannot fully rep- 
esent properties, behaviors, and functions of real-world in- 
erdependent CIs. There are also many studies focusing on a 
eries of problems called Critical Node Problem (CNP), which 

oal is to find a set of vertices in the graph whose removals 
esult in the largest damage to network topology (i.e., pair- 
ise connectivity) [31,34,35] . These studies looked into undi- 

ected and unweighted graphs, and are often widely applied 

nto social network research and vaccination research, which 

mphasize the existence more than the strength of relations 
etween vertices. 

In the context of CI, the order of targeted attacks (worst- 
ase simulation) is usually determined by component crit- 
cality: the more critical a certain component is, the more 
evere impact its failure is to the whole network [21] . Iden- 
ification of critical components is an important part of CI 
esilience/vulnerability analysis, and scholars have proposed 

arious methods to assess facility criticality [32,36,37] . Some 
esearchers assessed infrastructure facility criticality using 
ite investigations, interviews and questionnaires with indus- 
ry experts [2,8] , though manual observations and expert opin- 
ons may be subject to personal experience and judgment 
ompared to numerical evidence. Similar to those studies on 

rtificial general networks mentioned above, many studies 
sing real-world CI networks also adopt a pure topological 
erspective, from which system performance can only be re- 
erred as edge’s existences [16] , and commodity flows between 

airs of vertices and across CIs are not considered [38] . For 
nstance, critical components are usually identified by ver- 
ex degrees [26,39] , characteristic path length [28] , and cen- 
rality [40] . In addition to numerical metrics, an enumera- 
ion algorithm and a genetic algorithm were also proposed 

o identify critical vertices based on pure network topology 
29,41] . Pinnaka et al. [42] compared four topological metrics,
amely degree, closeness, betweenness and eigenvector cen- 

rality on US CI network, and found out that all these met- 
ics based attacks have very similar impact on the network.
n fact, unlike general networks, real-world CI networks con- 
ist of topology of vertices and edges, as well as engineering 
unctionality such as flow and capacity [43] , both of which are 
qually essential when assessing criticality [8] . There are a 
ortion of studies using flow based metrics to identify critical 
omponents [5,37,44,45] : for example, Sullivan et al. [46] pro- 
osed travel time to identify critical road segments in trans- 
ortation system; Matisziw and Murray [47] focused on the 
vailability and operation of source-sink flow after disruptions 
nd proposed an optimization model to identify infrastruc- 
ure critical to system flow; Nicholson et al.[48] emphasized 

erformance-driven measures of component importance, and 

roposed weighted flow capacity rate importance measure- 
ent that accounts for both flow and capacity of edges. How- 

ver, there is no prior study that integrated topology and 

ow using one single criticality measurement approach. Al- 
hough several studies [1,28] considered both network topol- 
gy and function into their analysis, these two aspects were 
odeled differently and separately, which would lead to two 

eparately calculated and somewhat inconsistent criticality 
ndices. 

This study proposes a method that integrates topology and 

unction of a network in infrastructure facility criticality as- 
essment. The study presented in this paper focuses on five 
rban lifeline systems: water supply, electric power, natural 
as and oil, transportation, and telecommunications [49,50] .
rom a network perspective, these five CIs share a typical 
echnological network structure, which are defined as ‘man- 

ade networks designed typically for distribution of some 
ommodity or resource, such as electricity or information’ [18] .
ollowing a network based modeling paradigm for these tech- 
ological networks, this paper proposes a new vertex critical- 

ty assessment implemented and illustrated in a multilayer 
eighted directed network model. Concretely, a biased PageR- 
nk algorithm is introduced and refined to calculate vertex 
riticality, which combines both network topology, embedded 

n adjacency relationship, and network function, embedded 

n network flow. To consider the impact of cascading failure,
his criticality assessment method also adopts a linear combi- 
ation form to take into account child vertices’ criticality us- 

ng conditional probabilities as parameters. A case study on 

ve real lifeline systems in China is conducted to illustrate 
nd validate the criticality assessment approach. Numeri- 
al results of vertex criticality rankings prove the effective- 
ess of this approach on both network topology and function,
ompared with traditional criticality metrics. Based on this 
pproach, numerical criticality values and rankings of in- 
rastructure facilities can be efficiently computed, which are 
elieved to be useful for decision makers for better infras- 
ructure protection and disaster mitigation before disruptive 
vents. 

. CI criticality assessment approach 

.1. A multilayer network model for urban 

nterdependent lifeline systems 

he study takes a multilayer network model as input to con- 
uct criticality assessment and related analysis. This input 
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Fig. 1 – A simple three-layer network model of a fictional 
city case. 
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multilayer network is illustrated using a simple fictional case
as shown in Fig. 1 . There are two layers representing two life-
line systems connected by inter-edges (solid arrows in the fig-
ure), which corresponds to physical and cyber interdependen-
cies under the classification proposed by Rinaldi et al. [10] . End
users are modeled as a dummy sink vertex connected to all
‘terminal’ vertices that are able to provide service directly to
users. For instance, in water supply system, reservoir vertex
cannot provide drinking water to users directly and thus does
not connect to end users. 

Unweighted undirected networks, which can be consid-
ered as special cases of networks, have been used in most
prior studies [15,28,51–53] to examine infrastructure topolo-
gies and relevant vulnerabilities from the topological perspec-
tive [45] . However, it is argued that the more general form
of network, namely weighted directed network, is able to re-
flect more properties of urban lifeline systems. In a weighted
directed network, vertices are assigned weights to repre-
sent their functional importance on transmitting commod-
ity, and thus can be distinguished with other vertices even
in the same layer; edges are assigned directions, and thus
can distinguish supporting and supported relationship for a
pair of vertices. Unlike existing studies in which flow proper-
ties are isolated from other properties (such as topology) in
the models [54] , the adopted network structure reflects both
topological and functional properties by edge direction and
weights. 
 

The weighted directed network is formally defined as a
graph G = ( V , E ) , where V is the set of weighted vertices
( | V | = n ) and E is the set of directed edges. To assist data col-
lection and calculation for criticality assessment, this study
introduces a new matrix termed flow matrix (FM) denoted as
Q. Similar to graph adjacency matrix, FM is a square matrix
( Q ∈ R 

n ∗n ). Different from adjacency matrix with only binary
elements, each element in FM Q ij (Q ij ≥ 0) represents the real-
time or average flow of the edge from vertex V i to V j . In partic-
ular, Q ij = 0 means there is no commodity flow from V i to V j ,
either because they are not directly connected or because one
of the two vertices is down. Note that flows can be in very dif-
ferent magnitudes and forms in the multilayer network model
involving several lifeline systems. It is thus essential to nor-
malize flows of edges so that dimensionless calculation across
systems can be conducted. For each system, a min-max nor-
malization is performed [55] . Min-max normalization maps
the original flow value x to a [0,1] range. Specifically, if the min-
imum flow of all edges in a certain system layer is denoted as
min, and the maximum flow of all edges in this system layer
is denoted as max, then the flow value x of a give edge can be
normalized as x ′ based on the equation below: 

x ′ := 

x − min 

max − min 

(1)

After this normalization, all flows are converted to posi-
tive and dimensionless values within [0,1], which is consis-
tent across systems and computable by the biased PageRank
algorithm. 

Based on FM, flow of a certain vertex is defined as the sum-
mation of all flow through it (both inbound and outbound
edges), which can reflect to what extent the vertex contributes
to commodity transmission in the network. Therefore, ver-
tex functional importance (i.e. vertex weight) is defined as the
proportion of its flow in the total flow of all vertices: 

 k = 

∑ n 
i =1 Q ik + 

∑ n 
j=1 Q k j 

2 
∑ n 

i, j=1 Q i j 
(2)

where W k is the functional importance of vertex k . Since each
edge is considered two times (both as inbound and as out-
bound edge) in the numerator, total flow in the denomina-
tor is multiplied by 2. Note that here W k is normalized, since∑ 

k W k = 1 . Vertex functional importance reflects how critical
the vertex is to the CI engineering function. For a functionally
important vertex, a malfunction or removal of this vertex and
the resulting loss of its inbound and outbound edges would
lead to significant loss of the overall functional performance
of the network. 

3.2. A criticality assessment approach based on the 
biased PageRank algorithm 

This paper proposes a criticality assessment method based on
PageRank (PR) algorithm. The original PR algorithm was de-
signed by Brin and Page [56] for measuring the importance
of numerous website pages for Google search. The core idea
of the original PR algorithm is that more important website
pages are more likely to be visited through hyperlinks from
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Fig. 2 – An example of a weighted directed network. 
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ther pages. The algorithm assigns each page a value called 

he PR value, which is the probability that at a particular time 
 random web user is at this page. In each iteration of the orig- 
nal PR algorithm, the PR value of a given vertex is divided 

qually among and transmitted to all its child vertices. The PR 

alue of each vertex at the beginning of the next iteration is 
he summation of PR values received from all its parent ver- 
ices. The iterative process terminates when all vertices’ PR 

alues fluctuate within an assumed small range (also called 

onvergence) between iterations. This is in essence a Markov 
rocess, where vertices and stochastic transition matrix code- 
ermine each iteration state [57] . 

In the context of infrastructure criticality assessment, this 
tudy adopts two adjustments to the original PR algorithm as 
escribed above. First, in the original PR algorithm, PR val- 
es at convergence reflect purely topological importance of 
he vertices, as all child vertices get the same share of PR 

alues from their parent vertex. Among the variations of the 
riginal PR algorithm, there is a biased PR algorithm using 
 personalization vector, as a probability distribution to di- 
ect PR value transition in each iteration, to refine the original 
lgorithm and to emphasize certain kinds of website pages,
uch as highly concerning topics [58] . The biased PR algorithm 

rovides a promising solution for assessing the level of ver- 
ex criticality accounting for both topological and functional 
roperties. Second, infrastructure network generally has at 

east one sink vertex (i.e., vertex without outbound edges),
hile these sink vertices will ‘absorb’ all PR values of vertices 

hey are connected to and thus lead to failure of the algorithm 

59] . To deal with this problem, this algorithm proposed here 
dopts damping factor with value of 0.85 as recommended in 

56] . This damping factor works as a probability that a random 

alk on the network restarts at each iteration and thus offsets 
he importance of sink vertices in the network. 
The details of the biased PR algorithm are explained as fol- 
ows. 

Step 1: Define a matrix Ā with its elements 
¯ i j determined by : 

¯ i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
k i 

, if there is flow from i to j in Q 

0 , if there is no flow from i to j in Q 

(3) 

here k i is the out-degree of vertex V i . The matrix determines 
ow PR value will be divided equally among child vertices for 
ll vertices. 

Step 2: Set random initial PR values P R i (0) ( i = 1 , 2 , . . . , n ) 
o all vertices, provided 

∑ n 
i =1 P R i (0) = 1 , set an iteration count

 = 0, and set a damping factor d at 0.85. Note that the selection
f initial PR values does not influence the convergence results 

60] . 
Step 3: Update the PR value of each vertex PR i ( t ) based on

he following equation: 

 R i ( t ) = d ×
n ∑ 

j=1 

ā ji P R j ( t − 1 ) + ( 1 − d ) × W (4) 

here W = ( W 1 , W 2 , . . . , W n ) T , acting as the personalization 

ector with each element being vertex functional importance.
his equation basically states that the updated PR value of 
ach vertex is the sum of all PR values proportionally dis- 
ributed by its parent vertices multiplied by d , plus a portion 

f the normalized functional importance multiplied by ( 1 − d).
Step 4: Repeat Step 3 until all PR i 

′ s converge. 
The advantage of the biased PR algorithm over the origi- 

al PR algorithm is demonstrated using an example network 
hown in Fig. 2 . This network is composed of seven vertices 
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Table 1 – Results of vertex criticality calculated by the orig- 
inal and biased PR algorithms for the example network in 

Fig. 2 . 

Vertex No. Original PR Biased PR 

A 0.0787 0.0979 
B 0.1956 0.1775 
C 0.1349 0.2127 
D 0.2524 0.2043 
E 0.1334 0.1444 
F 0.0761 0.0540 
G 0.1287 0.1093 
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(Vertex A-G) representing seven users in a social network site
such as Twitter and Weibo, and edges representing the rela-
tionship of following and being followed. Vertex size is approx-
imately proportional to the vertex weight (i.e., functional im-
portance, W in Eq. (2 )), which is also noted in the figure. While
the functional importance can have different meanings in dif-
ferent scenarios, in this example it reflects the relative num-
ber of posts and comments a certain user makes per day on
this social network site. If considering both topological and
functional importance, the intuition is that User C is more crit-
ical (or active) than other users. However, because such level
of involvement in the social interactions is not reflected in the
topological structure, the original PR algorithm is not able to
recognize User C’s criticality. As shown in Table 1 , the original
PR algorithm, only considering topological properties, ranks
User D as the most critical, since intuitively User D is the most
connected vertex in the network, while the biased PR algo-
rithm (using the steps explained earlier and with damping fac-
tor d set to be 0.85) takes both topological and functional prop-
erties into consideration and ranks User C as the most critical
instead. In fact, the latter one is a more reasonable assessment
given the significant contribution of User C to the activeness
of the social network. The two sets of criticality ranking are
distinct as can be seen in the table. 

To take into account the impact of cascading failures, it is
also necessary to add the potential risk of child vertices’ fail-
ure to the PR value. Cascading PR value for a certain vertex is
hence defined as a linear combination of its own PR value and
its child vertices’ PR values. 

 _ P R i = P R i + 

∑ 

j, ( i, j ) ∈ E 
θ j| i × P R j + 

∑ 

k, ( i, j ) ∈ E, ( j,k ) ∈ E 
θk | j θ j| i × P R k (5)

where j ’s are child vertices and k ’s are grandchild vertices of i ,
and PR i , PR j , and PR k are the PR values of i , j , and k respectively,
calculated through the iteration steps defined earlier. More-
over, both θ ij ’s and θ jk ’s are predefined propagation parame-
ters indicating the conditional probability of failure of child
vertex given the failure of parent vertex. Concretely, θ j | i indi-
cates the probability of failure of j given the failure of i , while
θk | j indicates the probability of failure of k given the failure of j ;
therefore, given the failure of i , the probability of the failure of
k is θk | j θ j | i according to the chain rule of probability. Though the
appropriate values of propagation parameters are out of scope
of this paper, for infrastructure vertex i which have more ex-
ternality (i.e., negative impact on child vertices due to failure
of itself), larger θ j | i is recommended, making the impact of cas-
cading failure more obvious. The above form is called two-step
cascading PR value. If considering more than two-step prop-
agation, C _ P R i should be also added with i ′ s grand grandchild
vertices’ PR values. 

4. Disruption simulation based on the 

criticality assessment approach 

The proposed criticality assessment based on the biased PR al-
gorithm can be used for targeted attack simulation. Targeted
attack is focused on vertex and the impact spreads from ini-
tially disrupted vertex to others through physical or cyber in-
terdependencies. Typical targeted attack disruptions (both in-
tentional and unintentional) include mechanical breakdown,
operational mistakes, and small-range man-made damages
such as small-scale fires. In this study, targeted attack is sim-
ulated by removing disrupted vertex one by one in a descend-
ing order of vertex cascading PR values, in order to exam-
ine network topological and functional response to the worst
possible nodal disruptions; and it is assumed that when a
targeted attack occurs, the broken vertex loses its entire func-
tion. Note that except targeted vertex attack, there are many
other forms of disruptions that might happen in urban areas.
For example, for large-scale natural disasters and large-scale
man-made damages, the initial impact is usually areal, which
means that all vertices within this attacked region would be
impacted [20,61] . Geographical region criticality involves com-
prehensive consideration of geographical properties and in-
frastructure layout, which is out of scope of this study. 

Network two-aspect response includes topological and
functional response, which are indicated by two metrics as
follows. First, as an indicator of network topological response
widely used in prior studies [22,26,28,62] , characteristic path
length (CPL) is used for measuring global efficiency of a net-
work. After vertex removals, decrease in CPL is a measure-
ment of damages in global efficiency of the whole network in
fulfilling connectivity. CPL is defined as the harmonic mean
of all geodesic paths between any pairs of vertices in the net-
work, and can be calculated as: 

PL = 

1 
1 
2 n ( n − 1 ) 

∑ 1 
d i j 

(6)

where n is the number of vertices, and d ij is the length of the
shortest path from V i to V j . It needs to be pointed out that
compared with the common use of CPL for an undirected net-
work, the shortest path between a pair of vertices is direction
sensitive in the directed network, which means d ij is not nec-
essarily the same as d ji . Second, considering that the funda-
mental role of CI is to provide and guarantee service to users
especially after disruptions, maximum flow is used as the in-
dicator of network functional response. Since service of differ-
ent CIs is from different source vertex (e.g., electric power is
from generator, and drinking water is from reservoir), maxi-
mum flow here refers to the maximum commodity flow from
all vertices to serve the dummy user vertex defined earlier in
the network structure, constrained by both vertex and edge
capacity. In order to calculate maximum flow, it is necessary
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Table 2 – Selected industries in the five lifeline systems 
of the case study county. 

Lifeline systems Selected industry Vertices 

Electric power (E) Electricity grids Substations 
Water supply (W) Drinking water 

supplies 
Reservoirs, water plants, 

pump stations 
Natural gas and oil 
(N) 

Gasoline and 
diesel supplies 

Oil depots, gas stations 

Transportation (T) Roads Road intersections 
Telecommunications 
(TL) 

Fiber-optic cables Data centers 

Table 3 – Basic statistics of the five lifeline system layers 
in the network model. 

Lifeline 
systems 

Number 
of vertices 

Number 
of edges 

Number of 
intra-level 

edges 

Number of 
inter-level 

edges 

E 12 87 21 66 
W 19 20 20 0 
N 15 14 14 0 
T 32 107 43 64 
TL 14 27 13 14 

l
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o first formally define related variables in the network. The 
apacity (or termed as supply) of vertex V i , denoted by w i , rep- 
esents the maximum possible amount of flow this vertex can 

enerate. In the context of interdependent infrastructure net- 
ork, if the loss of flow in each vertex is negligible, only the 
ummy user vertex has w i < 0. Moreover, the capacity of edge 
rom vertex V i to V j , denoted by c ij , represents the maximum 

ossible amount of flow that can flow from V i to V j . Note that
dge capacity may or may not be the same as Q ij defined above,
hich is the actual flow from V i to V j and thus satisfies Q ij ≤ c ij .
he pseudo-flow of edge from vertex V i to V j , denoted by f ij ,
epresents the net flow from V i to V j which cannot exceed the 
apacity c ij . Note that pseudo-flow does not necessarily satisfy 
ow conservation, which requires the sum of inbound flows 
 

j f ji is equal to the sum of outbound flows 
∑ 

j f i j . Another 
arameter, the waste of vertex V i , denoted as u i , is defined as
ax { 0 , ∑ 

j f ji −
∑ 

j f i j + w i } . It refers to the ‘wasted’ portion of 
apacity of V i not consumed by the current flow of commodi- 
ies in the network. Based these notations, the maximum flow 

n this context can be converted to the Minimum-Waste Flow 

MWF) problem of finding pseudo flows that minimize total 
aste in this network, and can be expressed mathematically 

s follows: 

inimize 
∑ 

i ∈ V 
u i 

ubject to u i + 

∑ 

j 

f i j −
∑ 

j 

f ji ≥ w i 

nd 0 ≤ f i j ≤ c i j 

nd u i ≥ 0 (7) 

here the first and third constraints are derived from the def- 
nition of vertex waste, and the second constraint from the 
efinition of pseudo flow and edge capacity. This MWF prob- 

em can be easily solved by the Pseudo-flow Algorithm [63] . 
Note that for both network topological and functional re- 

ponse, this study considers short-time network response 
nly (also known as the initial damage stage in infrastructure 
esilience process [64] ), so dynamic redistribution, adjustment 
nd other self-adapting mechanisms of both network topol- 
gy and flow are considered out of scope and hence not mod- 
led, which is consistent with various prior studies [1,27,28] . 

. Case study 

.1. Background of the case county 

 case study was carried out in a middle-sized county in 

outhern China to validate the proposed criticality assess- 
ent approach. Located at an intersection of several major 

conomic regions in Southern China, the case county has an 

rea of over 1000 km 

2 and a population of over 300,000. The 
ve lifeline systems of the county are well developed in recent 
ecades. One lifeline system may involve several industries,
or instance the telecommunications system involves multi- 
le carriers and the transportation system involves roads and 

ailways. For simplicity purpose, this case study selected the 
ost data-accessible industry in each lifeline system. Table 2 
ists the selected industries and vertices identified in these in- 
ustries. 

Data of the above lifeline systems, such as system basic 
unctions, approximate locations, quantity and direction of 
ommodity flows, were collected from responsible adminis- 
rative agencies and companies for research purpose only. Cer- 
ain types of data, such as exact accurate flow quantities of 
ertain municipal services, were security or business sensi- 
ive and not available to the research team. Reasonable esti- 

ations were made after consulting experts from the admin- 
strative agencies and companies to ensure the completeness 
f data needed for modeling and analysis. 

.2. Establishment of the network model 

fter data collection, a network model was established for the 
ve lifeline systems of the case county. The model consists of 
ve system layers (weighted and bidirected), and basic statis- 
ics of the network is presented in Table 3 . 

In layer E ( Fig. 3 a), the vertices represent one 220kv sub-
tation, five 110kv substations, and six 35kv substations.
he 220kv substation receives high-voltage electricity from a 
ation-level electric power grid and distributes electricity to 
ubordinate 110kv substations, serving as the sole source of 
lectricity in the county. In layer W ( Fig. 3 b), the vertices rep-
esent two reservoirs, four water plants, three pump stations,
nd ten control valves. Water flows from the reservoirs down- 
tream to the water plants; after treatment, the water flows 
hrough control valves for distribution to end-users. In layer 
 ( Fig. 3 c), the vertices represent one oil depot (outside the
ounty boundaries) and fourteen gas stations. All of the gas 
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Fig. 3 – Functional layers in the network model. 
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Fig. 4 – Multilayer network model of the case county. 
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t
w  
tations rely on oil supply from the oil depot via road tankers,
nd the fourteen intra-edges represent oil supply and demand 

etween the oil depot and the gas stations. In layer T ( Fig. 3 d),
he vertices represent 32 intersections on national highways,
rovincial roads and county-level roads. Unlike other lifeline 
ystems, it is difficult to clearly identify the traffic source in 

he county. For convenience, a virtual vertex is thus set out- 
ide the county as a fictional source of the traffic. Traffic flows 
etween pairs of intersection vertices are net flows of the two 
pposite directions. In layer TL ( Fig. 3 e), the vertices repre- 
ent one first-level data center, three second-level data cen- 
ers, and nine third-level data centers. Additionally, as illus- 
rated in Fig. 1 , a dummy user vertex, with its capacity set 
o be −10,000 (a sufficiently small negative number), is added 

ere in this network model, representing the collection of end 

sers. 
The above layers are interdependent in a wide variety of 

ays. For instance, remote monitoring and telecommunica- 
ions of reservoirs, water plants and pump stations in layer 
 rely on the telecommunication service provided by layer 

L. The operation of water plants and pump stations re- 
uires electric power from substations in layer E. Discharge 
nd transport of oil relies on road tankers that travel between 

he oil depot and gas stations. The operation and mainte- 
ance of gas stations require layer E, and remote monitor- 

ng of oil storage relies on layer TL. As for the transportation 

ystem, power or telecommunications outage would lead to 
he failure of traffic signals and would cause traffic conges- 
ion and interruption. Thus, each intersection requires ser- 
ice from layers E and TL. Telecommunications mainly rely 
n electric power. High-level data centers also require diesel 
upplies to run power generators and maintain electric power 
upply when regular power supply is disrupted. Note that in 

he case county, telecommunications between electricity sub- 
tations are fulfilled via a separate system especially designed 

or electric power system, other than layer TL, due to security 
nd stableness consideration. Therefore, there is no inter edge 
rom layer TL to E. Fig. 4 presents a sketch of the multilayer 
etwork model of interdependent lifeline systems in the case 
ounty (at the bottom of the model, there is a geographical 
ayer representing a common coordinate plane for the system 

ayers above). 
Based on the model, all vertices’ criticality was calcu- 

ated using the biased PR algorithm and considering two-step 

ropagation with all propagation parameters (the conditional 
robabilities θk | j and θ j | i in Eq. (5 )) set to be 0.5. All the other 
arameters, such as damping factor and initial PR’s, are set as 

nitially designed in the biased PR algorithm. 

.3. Vertex criticality assessment 

ased on the established network model, disruptions were 
imulated by strategically removing vertices, one at a time 
n the descending order of vertex criticality (i.e. cascading PR 

alues). After each removal, two-step propagation was simu- 
ated, which means that the removed vertex’s grandchild ver- 
ices also failed; and then the network was recovered back 
o the original state, in order to compare network response 
o each removal of single vertex. The results of network re- 
ponse measured in CPL and maximum flow are illustrated in 
igs. 5 a and 6 a, respectively. To compare and validate the ef-
ectiveness of this criticality assessment approach, three tra- 
itional topology-based methods for unweighted directed net- 
ork, namely vertex in-degree, out-degree and betweenness,
nd random vertex removal were also used, and the corre- 
ponding results are illustrated in Figs. 5 b–e and 6 b–e. 

The results show that, compared to commonly used met- 
ics and randomness, cascading PR value reflects a compre- 
ensive vertex criticality considering both network topology 
nd function. Concretely, for network function, as can be seen 

n Fig. 6 b–d, there is no any expected trend of changes in
aximum flow when using pure topological metrics, because 

he vertices that can make destructive damage to the net- 
ork function were not ranked high in these three rankings.
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Fig. 5 – Changes of network topological response to targeted vertex removal (based on different vertex criticality 

measurements) and random vertex removal. 

Fig. 6 – Changes of network functional response to targeted vertex removal (based on different vertex criticality 

measurements) and random vertex removal. 

 

 

 

 

 

 

 

 

 

This proves what has been hypothesized before that topolog-
ical metrics to a very large extent neglect the functional as-
pect. Only the curve of PR value based targeted attack has
the expected pattern that as the removed vertex becomes
less critical, the damage in the network flow that the removal
caused becomes less obvious. On the other hand, for network
topology, vertex in-degree and betweenness are worse than
PR value and out-degree, while curves in Fig. 5 a and c show a
consistent and similar trend of increase in CPL as the removed
vertex becomes less critical. 
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Actually, the fact that the out-degree based criticality 
easurement was found more reasonable than the other 

opology-based methods is not surprising, as out-degree is 
enerally believed to contribute more to vertex criticality than 

n-degree and is therefore a better indicator of vertex topolog- 
cal importance. Examples supporting this argument include 
cademic publications’ citation network as explained by Wang 
t al. [59] . To judge the importance of a certain paper, its cita- 
ion frequency (i.e. the number of papers getting support from 

his paper) is obviously a far more reliable indicator than its 
eferences (i.e. the number of papers giving support to the pa- 
er). Furthermore, a comparison of details in the PR ranking 
nd the out-degree ranking reveals that the former keeps a 
reater balance between network topology and function. For 
nstance, except the dummy user vertex, all source vertices 
i.e. E1, N1, W1, T1 and TL1) were ranked as the most criti- 
al vertex in their respective system layer in the PR ranking.
his is an appropriate reflection of the reality, because source 
ertices are all producers or sources of the commodities in 

heir respective systems, and removals of these vertices would 

eriously damage the functionality of the system in trans- 
itting the commodities. To take another practical instance,

here was a large-scale water breakdown in this county, last- 
ng for 58 hours starting from September 2nd, 2014. This in- 
ident, first recognized by a significant flow drop in a regulat- 
ng valve, was due to mechanical failure in the outlet gate of 
eservoir W1, and led to an emergency state especially in the 

ain city. The government deployed fire trucks to guarantee 
esidential water use, and main factories utilized their backup 

ater storage. Among the four ranking methods, only PR al- 
orithm ranks W1, the practically critical vertex, higher than 

he other methods do. Nevertheless, vertices with many out- 
ound edges but limited functional importance have higher 
ankings in the out-degree ranking than in the PR ranking. For 
nstance, vertex E10 had 14 child vertices (i.e., W4, N1, N2, TL2,
L5, T22, T23, T26-32), and was ranked the 3rd in the entire 
etwork in the out-degree ranking. However, E10 accounted 

or only 3% of the total flow in the electric power system, and 

as ranked 66th in the PR ranking. Such discrepancies have 
een observed in many of other vertices, such as E9, E8, TL8 
nd E7, which proves that the PR ranking achieves a balance 
etween topological and functional importance when assess- 

ng the criticality of the vertices. 

. Conclusion 

easuring the criticality of infrastructure facilities is funda- 
entally important for comprehensive resilience analysis of 

nfrastructure systems [8] ; however, there lacks research in the 
xisting literature that uses an integrated approach to factor 
n both topological and functional aspects of an infrastructure 
etwork. The main contribution of this study to the body of 
nowledge is the proposition of a new approach for critical- 

ty assessment of facilities in interdependent infrastructure 
ystems under disaster scenarios. Distinct from existing crit- 
cality assessments, this approach is based on a novel biased 

ageRank algorithm proposed in this study, which features the 
ntegrated consideration of both topological and functional 
ttributes of infrastructure facilities modeled using a multi- 
ayered complex network. The single numerical value (i.e., PR 

alue) provides a better reflection of system operation and 

eads to a comprehensive identification of critical components 
n urban lifeline systems. To assess the resilience response of 
etworked lifeline systems, urban disruptions can be simu- 

ated with vertex removals, based on vertex criticality ranking 
sing the proposed approach. The changes of network global 
fficiency and maximum flow can be calculated as indicators 
f network topological and functional response to the simu- 

ated disruptions. 
The proposed approach was applied in a case study con- 

ucted in five real lifeline systems of a middle-sized county 
n Southern China. The results demonstrated that the numer- 
cal criticality values well reflect both topological and func- 
ional importance in a unified form, thus proving the valid- 
ty of the proposed approach. Though this case study built a 
imple and general network model for these lifeline systems 
ithout detailed and specific functionality, such as detailed 

ow pattern and physical rule modeling, this criticality as- 
essment approach is not specially designed for certain types 
f network. As long as the input model embeds infrastructure 
ystem topology and function in edge direction and weight,
he proposed approach can measure vertex criticality. Both 

riticality value and ranking are promising for practical use 
n urban disaster mitigation and prevention prior to disrup- 
ive events. As data sensing and information analysis are in- 
reasingly popular in the field of infrastructure building and 

anagement [65] , there needs comprehensive and efficient 
uantitative approaches utilizing data to assist CI protection 

elated decision making. As an interdisciplinary field, interde- 
endent CIs pose a great challenge for effective and coordina- 
ive management, which highlights the vital importance of an 

ntuitive and easy-to-understand criticality assessment [11] . 
While the approach has been proven promising, it also 

ears several limitations that require further investigation in 

uture research. First, the determination of optimal value of 
onditional probability parameters for calculating cascading 
R value (defined in Eq. (5 )) under different failure scenarios 
as not been discussed in this study, and could be further in- 
estigated in future research. Second, considering model im- 
lementability and data accessibility, this study did not intro- 
uce domain-specific models with detailed functional design 

nd flow patterns for each single system. However, integrat- 
ng domain-specific models, such as the electrical power func- 
ional flow model proposed by Chopade and Bikdash [37] , may 
etter describe facility functions in various scenarios for dif- 
erent systems, and better reflect dependency relationships 
ithin each system. It may also better reflect real-world sit- 
ations, and thus allow better accuracy and performance of 
he proposed criticality assessment approach. While such de- 
ailed modeling of the systems is out of scope of this study, it
s a promising direction for future research. Third, this study 
ocuses on technological networks, in particular lifeline sys- 
ems, and considers social networks such as banking, edu- 
ation, and health care, as part of the external environment 
o the lifeline systems. Moreover, each lifeline system may 
ontain several different but interdependent industries. How 

echnological systems interact with the social networks, and 

ow to reflect interdependencies within each lifeline system,
hould be further examined. 
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