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Abstract Critical infrastructure systems (CISs) have a fundamental role in delivering

commodities that are essential to various functions in urban systems. The resilience of CISs

concerns the robustness of system performance against extreme events, the ineffectiveness

of disturbance propagation, and the efficiency of post-disaster system performance

restoration. The resilience of CISs is significantly impacted by the interconnectivity among

CISs and the interactions among different systems. Although this impact has been rec-

ognized by numerous studies, it has rarely been comparatively assessed using different

metrics that reflect the different perspectives of various stakeholders. Moreover, the

existing literature on the impact of interdependencies in the context of CIS disaster risk

reduction has primarily focused on the resistance stage rather than the entire life cycle of

disaster events. To address these gaps, this study assesses this impact at different stages of

the life cycle of disturbance events, analyzes the effect of interdependencies on deter-

mining the total resilience of CISs, and discusses the implications of the results in the

context of resilience enhancement of CISs in practice. To achieve this objective, this study

models interconnected CISs using four different network-based approaches, simulates the

disturbance propagation process and system restoration process of CISs in three different

scenarios, and measures the resilience of disturbed CISs with three different resilience

metrics. A case study of three CISs in a middle-sized city in Eastern China was conducted.

The CISs included an electric power system, a telecommunication system, and a water

supply system. The results revealed that the vulnerability of CISs to extreme events would

be significantly underestimated if interdependencies of the CISs were not considered,

which would cause a misleading estimation of the total resilience of the CISs. The findings

also suggested the importance of considering the interdependencies of CISs in the

sequencing of restoration tasks to optimize the efficiency of post-disaster restoration tasks.
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1 Introduction

Cities worldwide have experienced significant damages and losses due to a variety of

disasters in recent years. According to a recent United Nations International Strategy for

Disaster Reduction (UNISDR) report (2015), natural hazards, such as earthquakes, hurri-

canes, floods, and snowstorms, are causing economic losses of up to US$300 billion each

year. An increasing amount of evidence has indicated that the exposure of urban assets

worldwide has increased faster than vulnerability has decreased, which has generated new

risks for urban assets and consequently a steady increase in hazard-related losses (United

Nations 2015). Critical infrastructure systems (CISs), such as electric power systems and

water supply systems, are critical assets of cities because they have a fundamental role in

delivering commodities that are essential to various functionalities of urban systems. The

protection of CISs has a substantial impact on cities’ capabilities of addressing disasters

and their post-hazard recovery. For instance, the city of New Orleans was affected by

Hurricane Katrina in 2005, where levees were overrated and unexpectedly failed in some

critical areas (Colten et al. 2008). In addition, the majority of buildings, highways, and

infrastructure facilities, which were located below sea level, were drowned by floodwaters

(Pistrika and Jonkman 2010). The breakdown of these CISs caused a significant ineffi-

ciency of post-hazard restoration efforts. As a result, nearly half of the population per-

manently left the city, and some communities have not been restored (Yaukey 2012).

According to the President’s Commission on Critical Infrastructure Protection (PCCIP)

(1997), a CIS is defined as a network of urban manmade systems that synergistically work

to produce and deliver essential commodities that are fundamental to urban functions.

Various components of CISs are highly interconnected and interdependent (Rinaldi et al.

2001). The interdependency can be defined as an interactive relationship between two CISs

by which the state of one CIS influences the state of the other CIS (Rinaldi et al. 2001). For

instance, water-supply-pumping stations need electric power from electric power systems,

whereas electric distribution needs information from telecommunication systems.

Although the ever-increasing interdependencies among various CISs have improved the

efficiency of urban functionalities, they have also created significant complexities in the

manner in which these systems respond to various disturbances (Ouyang 2014; Satumtira

and Dueñas-Osorio 2010; Choi et al. 2017). The interdependencies may aggravate the

disturbance propagation among CISs and cause significant performance losses due to

disturbance events. The interdependencies also have a significant role in post-disturbance

restoration, in which the efficiency of restoration efforts of a CIS can be substantially

impacted by the efficiency of the restoration efforts of other CISs (Sharkey et al. 2016).

The sequence of restoration tasks can be rescheduled and optimized by considering these

interdependencies among CISs, which helps to improve the effectiveness of restoration

tasks. This study considers the impact of interdependencies on disturbance propagation and

the restoration of networked CISs.

The concept of resilience provides a new perspective for examining the ability of CISs

to maintain their performance during extreme events (Ouyang and Duenas-Osorio 2012).

The resilience concept has been introduced to measure not only a system’s ability to absorb

disturbances at the resistance stage but also its ability to rapidly recover from disturbances

at the restoration stage (Adjetey-Bahun et al. 2016). The resilience of CISs generally
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concerns the robustness of system functionality against extreme events, the ineffectiveness

of disturbance propagation, and the efficiency of restoration efforts, which are significantly

determined by the interconnectivity among CISs and their interactions. The resilience of

CISs is substantially impacted by their interdependencies. Although this impact has been

recognized by numerous studies (Cartalis 2014; Jabareen 2013; McDaniels et al. 2008;

Abramson and Redlener 2012; Colten et al. 2008; Ouyang 2014; Rinaldi et al. 2001;

Chopra and Khanna 2015; Cimellaro et al. 2014a), it has rarely been quantitatively

assessed. Several resilience metrics have been proposed in the literature, yet these metrics

reflect different perspectives of various stakeholders and may not yield congruent results

when applied to the assessment of CISs resilience. A holistic and comparative assessment

of the resilience of CISs using different metrics is necessary to enable stakeholders to

appreciate each other’s concern and make collective and coordinated decisions. Moreover,

existing literature on the impact of interdependencies in the context of CIS disaster risk

reduction has primarily focused on the resistance stage while to a large extent disregarding

the restoration stage, in which the interdependencies also play a significant role (Sharkey

et al. 2016). What remains ambiguous and warrants further investigation is whether the

impact of interdependencies varies over different stages of the life cycle of disturbance

events and, if so, whether different strategies are required to incorporate this impact in the

decision-making of CISs resilience enhancement.

To address these gaps, this study aims to assess the magnitude of the impact of inter-

dependencies on the level of resilience of CISs against disturbances, examine the char-

acteristics of this impact at different stages of the life cycle of disturbance events, and

reveal the implications of this impact for the resilience enhancement of CISs in practice.

To achieve this objective, this study models interconnected CISs using four different

network-based approaches, simulates the disturbance propagation process and system

restoration process in three different scenarios, and measures the resilience of disturbed

CISs with three different resilience metrics. The methodology and results are detailed in

the remainder of the paper.

2 Literature review

2.1 Quantitative assessment of resilience of networked CISs

The quantitative assessment of resilience has fundamental importance in the understanding

of the microcosmic mechanism of resilience and the investigation of its impact factors.

Prior studies have proposed different frameworks or methods to quantify or assess resi-

lience. An extensively adopted framework was proposed by Bruneau et al. (2003). Their

framework defines the resilience of communities or any type of physical and organizational

system as the ability to resist the impact of disasters and sustain system performance over

time. Resilience is calculated by integrating a functionality curve during the disasters.

Chang and Shinozuka (2004) quantified resilience as the probability that a system would

satisfy both robustness (minimum performance loss) and rapidity (maximum recovery

time) standards during a specific event. Cimellaro et al. (2010a) contended that resilience

should be assessed based on analytical functions regarding system robustness and rapidity.

Zobel (2011) proposed a method of multi-dimensional resilience measurement that con-

siders the balance between initial functionality losses and recovery speeds. Henry and
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Ramirez-Marquez (2012) proposed a measurement method in which resilience is defined as

the time-dependent ratio of recovery over maximum loss.

To implement these resilience quantification approaches, the system functionality or

performance should be defined and quantified. Different types of CIS performance metrics

have been proposed in the literature for this purpose. Since CISs are extensively net-

worked, certain topological properties are required to measure the CIS performance.

Examples of typical topology-based system performance metrics include the number of

nodes, average degree of nodes, and average critical path length (Duenas-Osorio et al.

2007a, b). The network connectivity of CISs measured by these metrics is regarded as the

level of accessibility to commodities delivered by CISs. An alternative type of metric that

measures the properties of the delivered commodities by CISs was introduced. Examples

include the amount of electricity provided by power grids (Omer et al. 2009; Ouyang and

Duenas-Osorio 2012), the quality and quantity of water provided by water distribution

networks (Christodoulou et al. 2018), the available traffic flow on roads (Ip and Wang

2011), and the number of patients served by healthcare systems (Bruneau and Reinhorn

2007; Cimellaro et al. 2010b). These metrics may also be calculated as the ratio of the

current amount of delivered commodities to the amount of delivered commodities in

normal conditions (Reed et al. 2009). To consider the impact of system performance loss

on social and organizational systems, economic and social metrics, such as asset losses

(Cimellaro et al. 2010a), loss of gross regional product (GRP) (Chang and Shinozuka 2004;

Ouyang and Duenas-Osorio 2014), and the number of interrupted customers (Ji et al.

2017), were introduced.

To implement these approaches for resilience quantitative assessment, the time-variant

performance of CISs at different stages of an event life cycle, including the post-disaster

restoration, should be described. These descriptions can be prepared based on a historical

analysis of disaster events using materials such as news reports (Olshansky et al. 2008;

McGee et al. 2016), official data statistics (Papathoma-Koehle et al. 2012; Cimellaro et al.

2014b), and field surveys (Kwasinski et al. 2009; Suppasri et al. 2013). Based on these

case-based methods, different stages can be identified and defined to describe the time-

variant post-disaster CIS performance. For example, Henry and Ramirez-Marquez (2012)

proposed a framework to describe various stages (including disruption, disrupted state, and

recovery) of CIS performance response to extreme events. Similarly, Ouyang et al. (2012)

proposed a three-stage (including resistance, absorption, and restoration) resilience anal-

ysis framework. Different approaches were also proposed to quantitatively assess these

stages based on simulation techniques. Given a specific extreme event, the CIS perfor-

mance at the resistance stage can be simulated with agent-based models (Dudenhoeffer

et al. 2006; Casalicchio et al. 2010) or network-based models (Duenas-Osorio et al. 2007b;

Lee et al. 2007; Holden et al. 2013). The CIS performance is assumed to be constant at the

absorption or disrupted stage (Henry and Emmanuel Ramirez-Marquez 2012; Ouyang et al.

2012; Panteli et al. 2017). The time-variant performance of CISs is significantly dependent

on external factors, such as the availability of restoration resources and the scheduling of

restoration tasks. In prior studies, CIS performance at the restoration stage was described

with different types of curves, including linear, exponential, or trigonometric curves.

(Cimellaro et al. 2010b). The linear curve is suitable for situations in which information

about preparedness and resources is not available (Cimellaro et al. 2010b). The exponential

curve is suitable for situations in which the initial response is fast due to a high level of

resources and preparedness (Kafali and Grigoriu 2005). The trigonometric curve is suit-

able for situations in which the response is initially slow due to a lack of preparedness and

resources (Chang and Shinozuka 2004).
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The existing literature on the quantitative assessment of resilience can be improved in

two ways. First, the majority of previous studies adopted only one type of CIS performance

metric. However, in reality, different stakeholders are usually concerned with the perfor-

mance of CISs from different perspectives (Bruneau et al. 2003). For instance, system

operators may be more concerned with the technical functionality of a system, whereas city

managers may be more concerned with the social impact. These different perspectives and

concerns can only be reflected with different system performance metrics, which may not

always provide congruent results. Second, the restoration curves of the CISs are coarse-

grained, based on simplified system-level assumptions and do not fully capture the impact

of the interdependencies among infrastructure systems. To address the first gap, this paper

introduces three system performance metrics, which reflect the topological, functional and

social perspectives, to assess the resilience of CISs. The results quantitatively reveal the

discrepancies among different system performance metrics, behind which are the dis-

crepancies among the concerns of various stakeholders. As a result, the findings may

enable stakeholders to appreciate each other’s concerns and make collective and coordi-

nated decisions. To address the second gap, this paper describes the time-variant CIS

performance at the restoration stage based on a component-level assessment. The time-

variant state of each component is determined based on its previous state and the progress

of restoration tasks, and the states of all components are integrated to assess the CIS

performance at the system level. This bottom-up approach not only provides a fine-grained

system performance assessment but also allows consideration of the interdependencies

among components from different infrastructure systems.

2.2 Effects of interdependencies in the context of disaster risk reduction

Due to the increasing significance of interdependencies in disaster risk reduction, various

empirical approaches have been developed in the literature to identify the CIS interde-

pendencies and analyze their impact. Analyzing historical data is one approach. According

to Ouyang (2014), disturbance propagations that repeatedly occur between the components

of two CISs in different disaster events suggest the close interdependency between these

CISs. Thus, historical data of natural disasters, such as earthquakes and hurricanes, can be

collected and analyzed to identify and quantify potentially important interdependency

patterns at both the system level (Mendonca and Wallace 2006; Luiijf et al. 2009;

McDaniels et al. 2007) and the component level (Chou and Tseng 2010). To facilitate this

purpose, several open databases have been made publicly available. For instance, Luiijf

et al. (2009) introduced a database that includes 1749 CISs failure incidents in 29 Europe

nations; Mendonca and Wallace (2006) built a database that includes 3 months of incident

reports about the World Trade Center attack. In addition, different modeling approaches

have been developed to simulate the performance of CISs during extreme events. These

approaches include agent-based modeling (Dudenhoeffer et al. 2006; Casalicchio et al.

2010), input–output modeling (Haimes and Jiang 2001; Haimes et al. 2005) and network-

based modeling (Duenas-Osorio et al. 2007a, b; Lee et al. 2007; Holden et al. 2013). Using

these models, the performance of CISs in responding to extreme events can be simulated

by either considering interdependencies or not considering interdependencies, and the two

sets of results can be compared to identify the time-variant impact of interdependencies on

CIS performance (Laprie et al. 2007; Zhang and Peeta 2011; Nan et al. 2013; Portante et al.

2017).

Based on the understanding of the impact of interdependencies on the disaster risk

reduction in CISs, numerous recent studies have focused on post-disaster capacity planning
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by considering interdependencies. Reliability and risk assessment techniques, including

failure modes and effects analysis (Uday and Marais 2015), fault and event trees (Fleming

et al. 2013), and Bayesian belief networks (Aven 2013), were employed to identify the

weaknesses of CISs and suggest pointed enhancement measures. The criticality of different

systems and their components were measured using theory-based metrics, such as node

degree and network betweenness (Zio and Golea 2010; Winkler et al. 2011), or by con-

sidering their connections with associated industries and communities (Oh et al. 2013). The

results were applied to guide the design of possible measures to protect the most important

systems and components (Pregnolato et al. 2016). Using high-fidelity simulation tech-

niques, CIS performance in responding to extreme events can be simulated. With the

objective of minimizing potential system performance losses, a trial-and-error process was

conducted to optimize CIS design schemes by varying the characteristics of infrastructure

components in simulations (Morcous and Lounis 2005; Ash and Newth 2007; Santella

et al. 2009; Martinez-Mares and Fuerte-Esquivel 2013; Wang et al. 2017; Ouyang 2017).

Prior studies have achieved considerable progress in understanding the effects of

infrastructure interdependencies in the context of disaster risk reduction and developing

appropriate capacity planning measures. Note that these studies have predominantly

focused on the resistance stage and to a large extent disregarded the restoration stage, in

which the interdependencies also play a significant role (Sharkey et al. 2016). In reality,

restoration efforts are usually separately planned and performed in different CISs and lack

necessary communication and coordination across CISs, consequently preventing the

optimal scheduling of restoration tasks and mobilization of resources. Cavdaroglu et al.

(2013) presented a model for optimizing restoration tasks in a single CIS by considering its

interdependencies with other CISs. They reported that the restoration process was signif-

icantly improved when these interdependencies were considered. This paper simulates the

concurrent restoration of different CISs, with holistic consideration of their interdepen-

dencies in the sequencing of all restoration tasks. This study enables a comprehensive

assessment of the effects of infrastructure interdependencies throughout an entire distur-

bance event cycle.

3 Representative models and metrics

This section presents the details of four existing network models, including their charac-

teristics, variables and configurations, application scenarios and implementation processes,

and the details of three existing resilience metrics, which are adopted in this study for

assessing the impact of interdependencies of CISs on their level of resilience.

3.1 Network-based models

3.1.1 Related work

As an emerging approach for CISs modeling, network-based modeling is increasingly

adopted in recent studies. CISs can be modeled as networks, in which nodes represent built

facilities, and links represent relational connections among the nodes. Different network-

based models can be generally grouped into topology-based models and flow-based

models, according to a holistic review by Ouyang (2014). These two approaches primarily

differ in terms of the definition and calculation of the state of CIS components. The
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topology-based approaches model each component (node or link) of CISs with discrete

states, which are usually binary, including the failed state and the normal state. Numerous

studies have been performed with topology-based methods to simulate the failures of nodes

and networks (Poljanek et al. 2012; Ouyang and Duenas-Osorio 2011; Duenas-Osorio et al.

2007b; Johansson and Hassel 2010). The flow-based approaches model each component of

CISs with continuous states, which are usually calculated as the percentage of the current

flow of commodities that pass through a component to the normal level of flow. Numerous

studies have applied the flow-based models to examine the interdependencies among

different CISs and simulate their responses to different extreme events (Ouyang 2014;

Ouyang and Duenas-Osorio 2011; Svendsen and Wolthusen 2007a, b).

3.1.2 Selected modeling approaches

In this study, four network models were selected from the literature and implemented to

investigate the impact of the interdependencies among CISs on their disaster resilience.

These models include the models proposed by Johansson and Hassel (2010) (referred to as

Model 1), Duenas-Osorio et al. (2007a) (referred to as Model 2), Lee et al. (2007) (referred

to as Model 3), and Trucco et al. (2012) (referred to as Model 4). The representativeness of

these models and their detailed configurations, as well as their implementation in this

study, are described in this subsection.

Model 1 is a deterministic topology-based network model with limited consideration of

the functional properties of CISs. This model was proposed by Johansson and Hassel

(2010) to capture the geographic and functional interdependencies among railway, traction

power, telecommunication, auxiliary power and electrical in-feed systems in a fictional

railway network. This model consists of a topological submodel and a functional sub-

model. The topological submodel describes the connection relationships among infras-

tructure facilities, including nodes and directed links, in which each node has a binary state

of normal or failed. The functional submodel describes certain functions (e.g., amount of

delivered flow) of each node. If the state of a node is normal, the node is fully functional;

otherwise, it loses all functionality. In the topological submodel, when a node fails, this

failure causes the failure of all nodes that are directly connected to it by links; this

propagation of failures will continue throughout an entire network. Then, the functional

submodel is applied to recalculate the function of each node and the total function of the

network. This model is extensively applied in the vulnerability and resilience analysis of

various CISs, such as water distribution systems (Diao et al. 2016) and railway networks

(Zhang et al. 2016).

Model 2 is a probabilistic topology-based network model that was proposed by Duenas-

Osorio et al. (2007b) to simulate the interdependencies between electric power systems and

water supply systems. This model is similar to Model 1, with the exception of how it

models the disturbance propagation across CISs via their interdependencies. The

researchers proposed that the failure of a node in one CIS is conditional, at a certain

probability, to the failure of nodes in another CIS on which it relies to function. They also

proposed that this probability can be determined based on experience or historical data. For

instance, in reality, a failed node in an electric power supply system may cause the failure

of interconnected nodes in a water supply system at a certain probability, and vice versa.

Based on empirical data, closer proximity of the interconnected nodes can produce a larger

probability of cascading failure. The conditional probability of cross-CIS cascading failure

can be determined based on the spatial proximity of the connected nodes. This model has

been extensively adopted in prior research for vulnerability analysis of CISs (Ouyang et al.
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2009; Duenas-Osorio and Rojo 2011), cascading failure simulation (Duenas-Osorio and

Vemuru 2009; Hernandez-Fajardo and Duenas-Osorio 2013) and disaster risk assessment

(Poljanek et al. 2012).

Model 3 is a flow-based network model that was proposed by Lee et al. (2007) to

simulate the interdependencies among electric power systems, telecommunications sys-

tems, and subway systems. In this model, each node or link has two parameters (i.e., flow

and capacity). Flow refers to the actual rate at which commodities pass through a given

node or link, and capacity refers to the maximum flow allowed by a given node or link. The

node state is a continuous variable between zero and one, which represents the ratio of

current flow to normal flow. The disturbance propagation is modeled in such a manner that,

for a node in one CIS that relies on commodities from nodes in other CISs to function, the

decrease in these commodities may proportionally reduce the capacity of this node. For

instance, a water-pumping station relies on electric power to work. If the amount of electric

power that is provided is decreased to a critical level on which it becomes the bottleneck

for the water-pumping station to function, then the capacity of the water-pumping station

would be assumed to proportionally decrease, regardless of whether the serviceability of

other infrastructures on which the water-pumping station relies to function also decreases.

In addition, this model assumes that the flow of a node or link cannot exceed its capacity

and that the total flow supply in a CIS equals the total flow demand. The model also

considers flow redistribution, which is aimed at satisfying as much flow demand as pos-

sible in a CIS immediately after a disturbance by changing and rebalancing the flow of all

nodes and links within their respective capacities. Model 3 has been adopted in original or

revised forms in numerous studies and applied to, e.g., resilience assessment of railway

systems (Adjetey-Bahun et al. 2016), and a vulnerability analysis of interdependent

infrastructures (Holden et al. 2013).

Model 4 is another flow-based network model that was proposed by Trucco et al. (2012)

to simulate the interdependencies among transportation systems, electric power systems,

and gas systems. In reality, the demands of different end users for CIS commodities are not

always indifferently satisfied. For instance, when commodities are limited, the demand of

critical components in interconnected CISs may be prioritized. Model 4 reflects this sit-

uation. It is similar to Model 3, with the exception of how it models disturbance propa-

gation. Model 4 assumes that when the commodities delivered by components in a CIS

decrease, the supply of these commodities to certain critical and prioritized components in

other CISs remains at a certain level, while the supply to other components proportionally

decreases. Numerous studies have adopted or extended this model in the simulation and

risk assessment of interdependent CISs (Lu et al. 2015; Rehak et al. 2016).

3.2 Resilience metrics

The assessment of resilience has fundamental importance to the understanding of the

microcosmic mechanism of resilience and investigation of its impact factors. Existing

studies of resilience metrics have been reviewed in Sect. 2. In this study, three metrics

were employed: metrics proposed by Duenas-Osorio et al. (2007b) (referred to as Metric

1), Omer et al. (2009) (referred to as Metric 2) and Reed et al. (2009) (referred to asMetric

3). These three metrics focus on the structure, functionality, and social impact of CISs.

Their representativeness, computation, and implementation in this study are described in

this subsection.

The three resilience metrics adopted in this study are calculated as the integral of the

ratio of the actual level of system performance to the normal or desired level of
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performance over the entire disturbance event cycle, including the destruction stage and

the restoration stage. They can be calculated as follows:

R ¼
r
t1
t0
Q tð Þdt

Q0 t1 � t0ð Þ ð1Þ

where R denotes the level of resilience, Q0 denotes the normal or desired level of system

performance, Q tð Þ denotes the actual level of system performance, and t0 and t1 denote the

time of disturbance occurrence and system full recovery, respectively. The system per-

formance is assumed to fully recover to the normal or desired level after a certain amount

of time, where t1 is definite. The units of Q0 and Q tð Þ are determined by the definition of

system performance, which differs among different metrics. The three metrics primarily

differ with regard to how they define system performance.

Metric 1 defines system performance as the average of the shortest path lengths between

any two nodes. This definition reflects the structure connectivity of the CISs network

(Duenas-Osorio et al. 2007b). The average of all shortest path lengths can be calculated

based on Eq. (2):

CPL ¼ n n� 1ð Þ
P

i 6¼j2V
1
dij

ð2Þ

where CPL denotes the average of all shortest path lengths, dij denotes the shortest path

length (measured by the number of links traversed) from node i to node j, V denotes the set

of all nodes, and n denotes the number of nodes in V . When a node fails, all links from this

node and toward this node become invalid. This metric reflects the accessibility of users to

commodities delivered by the CISs. Metric 1 has been extensively adopted in prior studies

for CIS network resilience assessment (Ouyang et al. 2009; Holden et al. 2013).

Metric 2 defines system performance as the actual flow in a system at a given point of

time in the disturbance event cycle. This definition emphasizes the functionality of CISs

(Omer et al. 2009). The actual flow can be calculated as the sum of the actual flow

delivered by all nodes to end users, as expressed in Eq. (3):

F ¼
XN

i

sifi ð3Þ

where F denotes the current flow, si denotes the state of node i, fi denotes the flow that each

node normally delivers to end users, and N denotes the number of nodes in the network.

Metric 2 has been employed in numerous studies (Ouyang and Duenas-Osorio 2012;

Ouyang et al. 2012).

Metric 3 defines system performance as the satisfied end user demand. The actual

satisfied end user demand is usually measured by the number of consumers served by a CIS

and can be calculated as follows:

P ¼
XN

i

sipi ð4Þ

where P denotes the number of consumers served by a CIS serves, si denotes the state of

node i, pi denotes the number of consumers typically served by each node, and N denotes

the number of nodes in the CIS. Metric 3 is an extensively adopted resilience metric in
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various studies (Bruneau and Reinhorn 2007; Ouyang and Duenas-Osorio 2014). This

metric reflects the social impact of the system to some extent (Reed et al. 2009).

4 Model implementation and resilience assessment

4.1 Case city

A case study was conducted in a middle-sized Chinese city for this study. Located at an

intersection of several major economic regions in Eastern China, the case city has an area

of approximately 1000 km2 and a population of approximately 300,000. Three CISs in the

case city—the electric power supply system, water supply system, and telecommunication

system—were examined. The number and location of the CIS facilities and their con-

nections were determined based on the CIS design and operation data obtained from local

authorities and field visits. Built facilities, such as water plants and electric substations,

were regarded as nodes, whereas transmission lines and pipelines were regarded as links, as

shown in Fig. 1. A total of 45 nodes and 90 links were identified, as summarized in

Table 1. The data of system flows were collected based on system monitoring data and

historical records provided by local authorities. Due to the incompletion of actual data, a

few interdependencies that were not documented in available design schemes were set in

(a) (b) (c)

Electric Power System

Telecommunication 
System

Water Supply System

(d)

Fig. 1 CISs in the case city: a electric power supply system; b water supply system; c telecommunication
system; d interdependencies among three CISs
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this case study based on common sense. For instance, the facilities in water supply and

telecommunication systems require power supply from nearby electrical substations to

operate, and the facilities in the water supply and electric power supply systems rely on

nearby data centers for remote sensing and control.

4.2 Hazard simulation

A possible disaster scenario was simulated in the case city to expose the CISs to a regional

disturbance event, in which multiple nodes and links would undergo destruction and

restoration. A typhoon was the most likely type of disturbance in the case city according to

the city’s historical hazard records. The HAZUS-MH Hurricane Model (Vickery et al.

2006a, b) was utilized to simulate a typhoon disaster. Each CIS component in the case city

had a fragility curve against a typhoon. When given the strength of the typhoon, the failure

probability of a CIS component could be calculated as the cumulative probability below

the strength in the fragility curve. Different parameters of CIS components were used to

determine the fragility curve of the CIS components in the case city. These parameters

primarily included altitude and land use, which were established based on hypsometric

maps and urban planning data; structural strength, which was determined based on the type

of components and their construction standards; and surface roughness, which was

assumed to be uniform for all components for simplicity purpose. When the strength of the

typhoon was determined, the failure probability of every CIS component was calculated

based on its fragility curve.

A grade-12 typhoon (33 m/s wind speed) was simulated in the case city. CIS compo-

nents whose probability of failure exceeded 50% in the simulations were regarded as

physically damaged and functionally failed. These failures were applied as the initial

impact of the typhoon event that would subsequently propagate throughout the entire

networked CISs. The distribution of the initially failed nodes in the simulation is depicted

in Fig. 2.

4.3 Disturbance propagation simulation

Models 1–4 were implemented in the case study to model the three CISs and their inter-

dependencies. The initial and propagated impacts of typhoon disturbance on these CISs

were simulated. The disturbance propagation process simulated at the resistance stage was

decomposed into sequential steps. In each step, the disturbance propagated from the cur-

rent failed nodes in the network to the nodes that were directly connected to them. The

state of every node was updated after each step, and the disturbance propagation process

ended when the state of all nodes became stable. The time series data of the node states

over the entire resistance stage was analyzed to reveal the disturbance propagation paths

Table 1 CIS facilities and connections in the case city

Systems Facilities Connections

Electric power system Substations (12) Power cables (38)

Water supply system Reservoirs (2), plants (4), pumps (3), control valves
(10)

Water pipelines
(20)

Telecommunication
system

Data centers (14) Fibers (32)
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and patterns. Two sets of simulations were conducted. The first simulation considered CISs

interdependencies, and the second set did not consider CIS interdependencies. If interde-

pendencies were not considered at the resistance stage, each CIS was regarded as inde-

pendent, and disturbance propagation was restrained within individual CISs without

crossing different CISs.

The simulation of disturbance propagation is further explained as follows:

In Model 1, following Johansson and Hassel’s work (2010), a disturbance propagated

from one node to another node when a link between the two nodes existed.

In Model 2, following Duenas-Osorio et al.’s work (2007b), a disturbance propagated

between two connecting nodes at a conditional probability, which was determined based on

the spatial proximity of the nodes. Specifically, the conditional probability was propor-

tional to the reciprocal of the geographical distance between two connecting nodes

(Duenas-Osorio et al. 2007b). In addition, the conditional probability between the closest

connecting nodes in the network was set to 0.7 (Duenas-Osorio and Vemuru 2009), and

other conditional probabilities were normalized accordingly. One exception was the cas-

cading failure caused by cyber interdependency, which primarily affected the flow

Normal nodes in electric power system
Failed nodes in electric power system

Normal nodes in telecommunication system

Failed nodes in telecommunication system

Normal nodes in water supply systema
Failed nodes in water supply system

Fig. 2 Initial damages by typhoon in the case city
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redistribution capability of the CISs. A constant value of 0.2 was employed as the prob-

ability of the disturbance propagation through the cyber interdependencies (Dudenhoeffer

et al. (2006).

In Model 3, the normal flow of CIS facilities was determined based on historical flow

records following Lee et al.’s work (2007), and the normal capacity was set to 1.2 times the

normal flow according to Ouyang and Duenas-Osorio (2012). In addition, this model

assumed that nodes in the electric power supply or water supply systems would not be able

to conduct flow redistribution due to a loss of remote sensing and control functions if

telecommunication nodes on which they relied failed.

In Model 4, following Trucco et al.’s work (2012), the disturbance propagation was

established based on a literature review and actual practice surveyed in the case city.

Specifically, the model assumed that when the flow of commodities delivered by a node

decreased below 50% of its normal level, the supply of these commodities from this node

to predetermined critical nodes would stop decreasing, whereas the supply to other nodes

would continue to proportionally decrease.

4.4 Restoration simulation

In the simulation of the restoration stage, some assumptions were made according to the

literature on restoration simulation (Shoji and Toyota 2009; Matisziw et al. 2010; Nurre

et al. 2012). Restoration efforts were assumed to be coordinated and separately undertaken

within each CIS, which is common in practice. The resources required to restore CIS

facilities were assumed to be limited, and therefore, in each CIS, a maximum of one node

could be under restoration at any given point of time. The scheduling of restoration tasks

was based on the priority of nodes that required repair and did not consider any logical

relationships for simplification. The priority of a node was based on the population that

would be affected by the failure of this node (Guha et al. 1999; Xu et al. 2007). When

interdependencies in restoration were not considered in the simulation, this population

included only consumers of commodities that pass through the failed node; when inter-

dependencies were considered, this population also included consumers impacted in other

CISs. Note that only physically damaged nodes required restoration. Nodes that were

physically intact but functionally failed due to propagated disturbance impact did not

require restoration. These nodes would restore as soon as all nodes on which they relied to

function were restored.

Repairing a failed node required a certain amount of time. The simulation assumed that

the level of functionality of the node being repaired would gradually increase over time

until it was fully restored. A performance curve was introduced to describe this process.

This curve could be linear, exponential, or trigonometric according to the literature review

in Sect. 2. Considering the fact that emergency plans and restoration resources are gen-

erally available for CISs in cities, an exponential curve was established in this study.

Specifically, the following performance curve was employed in this study (Reed et al.

2009):

Q tð Þ ¼ Q0 � Q0e
�bt ð5Þ

where Q0 denotes the normal level of system performance, Q tð Þ denotes the actual level of
system performance at time t, t denotes the time required after restoration starts, and b

denotes a parameter that adjusts the total restoration time. Each failed node was assumed to

require the same amount of time to be restored to its normal state. In addition, to simulate
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the node restoration as discrete events, the restoration process of a node was divided into

five phases, with each phase requiring time T. In Models 1 and 2, in which the node state

was binary, a failed node would recover to its normal performance level after 5T. In Model

3 and Model 4, the performance level of a failed node was updated after each phase based

on Eq. (5).

4.5 Resilience assessment

Metrics 1–3 were employed to measure the resilience of CISs in the case study. The state

of each node in the CISs was continuously updated throughout the life cycle of the

disturbance event. Specifically, to compute Metric 1, the average of all shortest path

lengths was calculated based on the network topologies. To compute Metric 2, the amount

of commodities of each leaf node delivered to the end users was calculated by subtracting

the node’s out-flow from its in-flow. To compute Metric 3, the number of consumers

served by each node was estimated based on the population of the administrative district in

which the node was located. The population statistics were obtained from the latest census

data of the case city. In addition, for Metric 2 and Metric 3, the level of resilience was

assessed within each CIS, and the results were mathematically averaged to calculate the

total resilience of the entire networked system for simplicity. Because the node state in

Models 3 and 4 was a continuous variable and Metric 1 was only applicable to the discrete

node state, Metric 1 was not applied to assess the resilience of the CISs represented using

Model 3 and Model 4.

5 Simulation results

Simulations were performed in three different scenarios in this study. The results of the

simulations were compared to assess the impact of the interdependencies on the level of

resilience of the networked CISs at different stages of the life cycle of the simulated

extreme event. The three simulation scenarios are described as follows: (1) disregard the

interdependencies at both the resistance stage and the restoration stage (simulation sce-

nario 1), (2) consider the interdependencies at only the resistance stage (simulation sce-

nario 2), and (3) consider the interdependencies at both the resistance stage and the

restoration stage (simulation scenario 3). For each simulation scenario, extensive simu-

lations were run using 10 different simulation settings. Each simulation setting refers to a

combination of one of the four CISs models and one of the three resilience metrics. These

simulation settings are summarized and labeled in Table 2.

Strictly following the model implementation and resilience assessment procedures

explained in Sect. 4, the responses of the CISs to a typhoon disaster in the case study were

simulated using MATLAB. Given the probabilistic nature of Model 2, its simulation was

Table 2 Simulation settings with different models simulation and metrics assessment

Model 1 Model 2 Model 3 Model 4

Metric 1 a d – –

Metric 2 b e g i

Metric 3 c f h j
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run 10,000 times, and the results were averaged. The simulation results for the other three

models were deterministic; thus, these simulations were run once. As previously men-

tioned, the resistance stage, which can instantaneously occur in reality, was decomposed

into a number of sequential steps for an analytical purpose, and the restoration stage was

decomposed into phases that each required time T. The simulation results are depicted in

Figs. 3 and 4.

As shown in Fig. 3, the decline in system performance was significantly higher,

regardless of the simulation settings, when the interdependencies and the resulting cas-

cading failures were considered. In scenario 1, the performance losses, which were based

on Metric 1, Metric 2, and Metric 3 and averaged over different models, were 68, 43, and

Fig. 3 Simulation results of disturbance propagation in CISs for different simulation scenarios and settings
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49%, respectively, whereas the performance losses in scenario 2 were 97, 81, and 82%,

respectively. This result suggested that the actual maximum performance losses could be

up to twice of what people would expect if they ignored the interdependencies across CISs,

which would cause underestimation of disaster impacts and insufficient preparedness. The

simulation results indicated that a total of 20 nodes failed in Models 1 and 2 in scenario 1,

whereas this number increased to 41 inModel 1 and 37 inModel 2 in scenario 2. Similarly,

in scenario 1, a total of 18 nodes completely failed and two nodes partially lost their

functionality in Models 3 and 4, whereas a total of 30 nodes completely failed and five

nodes partially lost their functionality in both models in scenario 2. The additional node

Fig. 4 Simulation results of the response of CISs to a typhoon event for different simulation scenarios and
simulation settings
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failures were primarily caused by power outages that caused malfunctions of facilities in

other CISs and the unavailability of telecommunication services that caused a loss of

remote sensing and control and invalidation of the flow redistribution.

Table 3 summarizes the resilience assessment results for scenarios 1 and 2. As shown in

the table, the resilience level was 0.36, 0.31 and 0.30 lower when the interdependencies

were considered in the resistance stage, based on Metric 1, Metric 2, and Metric 3,

respectively. This finding indicated that the resilience of interconnected CISs could be

substantially overestimated when interdependencies across CISs were disregarded, con-

sidering the entire life cycle of disaster events. Note that the resilience assessment was

generally consistent across different models, with small standard deviations of 0.008,

0.030, 0.034 in scenario 1 and 0.076, 0.142, 0.151 in scenario 2, based on the three metrics.

Comparing the results across metrics, the resilience level assessed with Metric 1 was lower

than the resilience level assessed with Metrics 2 and 3, which suggested that CIS network

topologies can be more vulnerable to disaster impacts than CIS network functionalities. In

addition, in scenario 2, the system performance increased by 0.7 and 1.8% based on

Metrics 2 and 3, respectively, due to the flow redistribution.

A comparison of the simulation results between scenario 2 and scenario 3 is depicted in

Fig. 4. The optimized restoration sequencing in scenario 3 always produced a faster

restoration of system performance, regardless of the simulation settings. The time required

for the system performance to recover to 50, 70, and 90% of its normal level was reduced

by 3.17T, 2.34T, and 0.11T, respectively, when the interdependencies were considered in

the scheduling of restoration tasks, based onMetric 1, Metric 2, and Metric 3, respectively.

This difference was particularly distinct before the system performance recovered to 70%,

which suggests that improving restoration tasks sequencing has significant importance in

the efficiency of the initial performance, which is also the most important stage in post-

disaster restoration.

The resilience level was improved by 0.04, 0.03, and 0.03 by considering the interde-

pendencies in the optimization of the restoration tasks sequencing, as measured by Metric

1, Metric 2, and Metric 3, respectively. The results are summarized in Table 4. Due to the

simple structures of the CISs in the case study, the restoration tasks sequencing in scenarios

2 and 3 was similar, with the exception on one node in the electric power system, which

was prioritized in scenario 3 due to its interconnections with nodes in the water supply and

telecommunication systems. In reality, CIS structures can be substantially complicated and

interlinked, which will likely create larger differences between local optimal restoration

Table 3 Resilience assessment
that compares simulation scenar-
ios 1 and 2

Model 1 Model 2 Model 3 Model 4

Metric 1

Scenario 1 0.587 0.598

Scenario 2 0.169 0.277

Metric 2

Scenario 1 0.770 0.767 0.820 0.820

Scenario 2 0.347 0.459 0.635 0.637

Metric 3

Scenario 1 0.767 0.764 0.824 0.824

Scenario 2 0.340 0.459 0.647 0.648
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tasks sequencing and global optimal restoration tasks sequencing and consequent differ-

ences in restoration efficiency.

6 Discussion

This study aimed to assess the impact of interdependencies on the resilience of networked

CISs. The resistance and restoration stages of CISs in response to certain hazard events

were simulated with four existing modeling approaches of interconnected CISs. Three

existing resilience metrics were employed to assess the level of resilience of CISs modeled

with these approaches. The simulations were based on different combinations of CISs

modeling approaches and resilience metrics to assure that the assessment of the impact of

CISs interdependencies would be independent of the selection of modeling approaches or

resilience metrics.

The simulation results indicated that the performance losses were significantly higher

and the level of resilience was significantly lower when the interdependencies were con-

sidered in the resistance stage. This finding was consistent with the findings reported in

various studies (Duenas-Osorio et al. 2007b; Johansson and Hassel 2010; Arboleda et al.

2006). Quantitative assessments revealed that indirect disaster impacts caused by CISs

interdependencies were as severe as direct disaster impacts, which reveals the significance

of cross-CIS disturbance propagation. The results suggested that the disaster risk reduction

(DRR) of CISs should adopt a system-of-systems (SoS) approach (Kasai et al. 2015) to

identify vulnerable components that have the most significant global impact and take

appropriate measures. By tracing the disturbance propagation over time in the simulation,

the outage of electric power was determined to have an important role in escalating the

magnitude of indirect disaster impacts, which was consistent with prior studies (Duenas-

Osorio et al. 2007b; Lee et al. 2007; Trucco et al. 2012). In this study, node failures in the

electric power system were responsible for approximately 70% of all node failures. This

finding highlighted the criticality of sufficient redundancy for interconnectivity between

electric power systems and systems that require electric power supply to function. The

node failures in the communication system caused an additional 30% of failed nodes. This

finding suggested that remote control in electric power and water supply systems should be

strengthened and protected. The results also indicated that the flow redistribution and the

practice of prioritizing the demand of certain critical components caused a slight increase

in CIS resilience. The effect of these two measures would be more significant and distinct

Table 4 Resilience assessment
that compares simulation scenar-
ios 2 and 3

Model 1 Model 2 Model 3 Model 4

Metric 1

Scenario 2 0.169 0.277

Scenario 3 0.186 0.348

Metric 2

Scenario 2 0.347 0.459 0.635 0.637

Scenario 3 0.363 0.489 0.682 0.683

Metric 3

Scenario 2 0.340 0.459 0.647 0.648

Scenario 3 0.363 0.484 0.683 0.684
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and cause further mitigation of disaster impacts when the structures of CISs become more

complicated.

In current practice, restoration sequencing is usually determined ad hoc and is sub-

stantially dependent on the order by which failures are reported (Ouyang et al. 2012).

Optimizing the restoration sequencing can significantly increase the efficiency of

restoration tasks with the same resource limit (Xu et al. 2007; Ouyang et al. 2012). To

assess the impact of interdependencies, the restoration sequencing was optimized in sce-

narios 2 and 3, which differed in whether interdependencies were considered. The simu-

lation results indicated that the level of resilience was noticeably higher when restoration

sequencing was optimized with interdependencies considered, especially during the

immediate aftermath of disasters when fast restoration of critical infrastructure components

is critical. These results suggested that global planning and management that coordinate

different CISs, rather than decentralized management that focuses on the component level,

should be adopted. An SoS approach, which would enable the development of a globally

satisfactory and sustainable solution, rather than a locally optimal solution, is preferred in

restoration task sequencing problem.

The simulation results were generally consistent across different simulation settings

with four observations: (1) the simulation results, including performance losses, node

failure, resilience assessment, were generally consistent with slight deviations across

simulation settings, (2) the topology-based models were more sensitive to interdepen-

dencies than the flow-based models; (3) the difference in the simulation results across

models was slightly enlarged when the interdependencies were considered; and (4)

although the resilience assessments were metric-dependent, the magnitude of the differ-

ences in resilience, either between scenario 1 and scenario 2 or between scenario 2 and

scenario 3, was generally consistent across metrics. These results suggested that the models

and metrics that were selected in this study were reasonable and that the conclusions of this

study regarding the impact of interdependencies on interconnected CISs were generally

independent of the CISs modeling approaches and resilience metrics.

7 Conclusions

This study simulated the resistance and restoration stages of interconnected CISs in

response to a regional disturbance. The CISs were modeled using four network-based

approaches, and their resilience levels were assessed using three different metrics. By

comparing the simulation results for three different scenarios, the impact of interdepen-

dencies on the resilience of CISs was identified and quantitatively assessed. The simulation

results indicated that regardless of the network-based CIS models and CIS resilience

metrics, the interdependencies between different CISs had a significant impact on the

responses of the networked CISs to simulated extreme events during the resistance and

restoration stages and on their total level of resilience. Specifically, the results revealed that

the vulnerability of CISs to extreme events would be significantly underestimated if the

interdependencies of the CISs were not considered, which would cause a misleading

estimation of the total level of resilience of the CISs. The findings also suggested that the

interdependencies of CISs must be considered in the restoration task sequencing to opti-

mize the efficiency of post-event restoration tasks. It was speculated that the impact of

interdependencies would be more distinct when the structure of CISs increased and became

complex. Note that the methodology described in this paper is applicable to CISs with the
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network type of topology and measurable flows. Extending this methodology to other types

of critical infrastructures requires additional research. The study could also be extended in

future research by modeling other types of CISs interdependencies and simulating other

types of extreme events.
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