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A B S T R A C T   

The systemic heterogeneity between different critical infrastructure systems (CISs) can significantly influence the 
failure propagation process across the systems. For instance, when power supply systems are affected by an 
earthquake, physical damages mainly occur at nodes and seldom occur at links, since the cables are flexible 
enough to withstand the impacts. Water supply systems on the other hand are prone to experience physical 
damages at both nodes and links. However, despite the increasing volume of literature that examines failure 
propagation risks across interdependent CISs, only few studies have accounted for various systemic heterogeneity 
factors (HFs) and their potential impact on cascading failures. The aim of this study is to reveal and quantify the 
significance of such impact, for which a four-step approach is introduced. A case study was conducted, which 
examined the impact of three HFs on failure propagation across two interdependent power and water supply 
systems in the event of a simulated earthquake. Seven improved models were developed and their respective 
simulation results were compared. The comparison of simulation results from the baseline model and improved 
models revealed that the impact of the simulated earthquake disaster on CISs would be significantly mis-
estimated if the HFs were not considered, and that each HF impacted the failure propagation in a different way. 
The proposed approach and the findings in the case study are expected to uncover the drawbacks in current CISs 
failure propagation models, and provide a foundation for the development of more reliable failure propagation 
modeling approaches in future research.   

1. Introduction 

Critical infrastructure systems (CISs), such as power and water sup-
ply systems, constitute the backbone of our cities and therefore, their 
reliable performance is crucial to ensure the sustainable development 
and security of human societies [1]. CISs are not independent of each 
other but rather show a variety of dependency relationships [2–4]. 
Physical components from one infrastructure system may depend on 
components from the other infrastructure systems and vice versa, as a 
result, failure of a component in one system may cause failure of com-
ponents in the dependent systems [5]. For example, the power supply 
system supplies electricity needed to power the pumping station of the 
water supply system, which in turn supplies the power system with 
cooling water needed by its power plant. These bi- or multi-directional 
dependences, also referred to as interdependencies [3,6], may result 
in a set of complex topological network interactions and hidden feed-
back loops between the CISs, which subsequently could alter the disaster 

response behavior of individual CISs [7]. In a system-of-systems that is 
composed of multiple CISs, local disturbances may propagate in an 
unusual and unpredictable manner, resulting in ripple effects across the 
entire CISs, which in the worst cases can lead to global failure [8,9]. 

Systemic heterogeneity of interdependent CISs refers to the differ-
ences between the CISs in terms of their physical network features, 
transported material properties, operational characteristics and re-
sponses to disaster [10–14]. Systemic heterogeneity is the main cause of 
the difference in failure propagation mechanisms among CISs [10,13]. 
For instance, compared to the water supply system, the power grid is 
more susceptible to overload damage of components due to power flow 
redistribution within the system after some components are damaged by 
a disaster event [15]; Also, in power supply system, physical damage 
mainly occurs at the nodes since the links (i.e. cables) are flexible 
enough to withstand the impacts. On the other hand, in the water supply 
system, both the nodes and links are prone to physical damages since 
they are rigid elements [15,16]. Heterogeneity is an important aspect 
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not to be overlooked when analyzing the mechanisms of 
self-organization and synchronization schemes in the field of statistical 
physics [17]. Despite its prevalence and significance, the impact of 
systemic heterogeneity on failure propagation across CISs and its overall 
disaster responses have not been adequately recognized and addressed 
in prior research. Although several studies have pointed out the possible 
impact of systemic heterogeneity, and emphasized the need to account 
for this impact in the modeling of CISs failure propagation as well as the 
estimation of CISs disaster losses [6,7,18,19], the magnitude of this 
impact and its underlying mechanism have largely remained unknown. 
This is manifested by the fact that most existing models of interdepen-
dent CISs do not incorporate various systemic heterogeneity factors 
(HFs) such as heterogeneity in susceptibility to overload damage and 
heterogeneity in locations of the main physical damage, that may have 
significant implications for failure propagation across the CISs. Instead, 
the CISs are largely considered homogenous in these models with 
respect to their disaster response patterns, which would inevitably lead 
to considerable inaccuracies in the simulated failure propagation pro-
cesses and outcomes. 

It is therefore hypothesized that if not properly considered, systemic 
heterogeneity would notably amplify or attenuate the overall disaster 
impact on interdependent CISs reported by simulation models. Such 
inaccurate estimate of disaster impact would prevent the implementa-
tion of appropriate disaster risk reduction measures and subsequently 
lead to insufficient disaster preparedness or overreaction. The aim of this 
study is to test the above hypothesis by proposing a four-step approach 
for assessing the impact of systemic heterogeneity on failure propaga-
tion across interdependent CISs, and hence investigate the importance of 
considering systemic heterogeneity in interdependent CISs models. 
Based on the proposed approach, semi-empirical fragility models should 
first be selected for different types of CISs components. A baseline CISs 
model should then be developed, followed by the development of a se-
ries of improved models that incorporate different HFs to the baseline 
model. Lastly, the above models should be subjected to a simulated 
disaster, and the results from each improved model should be compared 
to the results from the baseline model in terms of a set of criteria, to 
assess the impacts of the HFs on the failure propagation process and 
outcomes. In a case study conducted to demonstrate the efficacy of the 
proposed approach, a typical coupling of two CISs (i.e. power supply 
system and water supply system) was modeled using a widely adopted 
modeling approach (i.e. artificial flow-based (AFB) network modeling). 
The impact of systemic heterogeneity was then assessed under a simu-
lated earthquake scenario by comparing the failure propagation results 
from a series of improved models which incorporated different systemic 
HFs, to the results from a baseline model which did not consider sys-
temic heterogeneity. Results from this study are expected to raise the 
awareness of the drawbacks in current CISs failure propagation models, 
and serve as a foundation for the development of more reliable failure 
propagation modeling approaches in future research. 

The remainder of this paper is organized as follows: Section 2 pre-
sents related works and discusses current research gaps; Section 3 de-
scribes the methodology of this study; Sections 4 and 5 presents a case 
study and the results, respectively, followed by Section 6 that discusses 
the findings as well as their theoretical and practical implications; Sec-
tion 7 concludes the paper. 

2. Related work 

2.1. Approaches for modeling CISs 

Many approaches for modeling interdependent CISs have been 
developed in prior research. Earliest studies relied mostly on data from 
historical events and professional experience to identify the relation-
ships between different CISs [16]. However, the limited amount of 
historical data and the subjectivity of expert opinion often led to 
incomplete and inaccurate understanding of the characteristics of 

interdependency between the CISs. 
With the development of network science, many research barriers 

were lifted and considerable progress was observed in the area of CISs 
modeling [20,21]. Since CISs can easily be represented as networks, 
with the nodes and links representing different system components and 
their connections respectively, researchers began to use complex 
network models to solve CIS-related problems [22]. For instance, 
interdependency links were introduced to model and analyze the 
interdependent relationships between different CISs [7,23]. CIS 
modeling approaches that use complex network representation can be 
classified under two main categories namely, topology-based (TB) ap-
proaches and flow-based approaches [24]. These two categories mainly 
differ in terms of whether the approaches only model the topology of the 
network or both the topology and material flow within the network. A 
few other network models have also been proposed to represent and 
analyze CISs by integrating other logical algorithms to describe in-
teractions. Examples include the petri-net model [25] and Bayesian 
network model [26–28] 

CISs can also be described as complex adaptive systems consisting of 
many unique components or elements that have different individual 
characteristics and operational mechanisms [29]. The agent-based 
modeling (ABM) is a widely used bottom-up modeling approach for 
analyzing complex adaptive systems. An ABM model usually consists of 
a number of autonomous units called agents, which are linked together 
by interactions or relationships [30]. An agent can be a component, 
operator, element or signal of a CIS or even a CIS itself [20,31]. Devel-
oping an ABM model follows two important and relatively difficult steps 
[32]: the first is the identification of agents, i.e. how many and which of 
the agents should be taken into consideration; the second is the 
description of agent interactions, i.e. how these agents interact with 
each other. In prior research, the ABM approach has been adopted 
mainly to model and analyze the nonphysical relationships between 
CISs, such as the economic relationship between the CISs [33]. ABM can 
also be adopted to study the physical relationships between CISs. For 
example, an ABM model was used to assess the seismic resilience of an 
interdependent electric power supply system (EPSS), transportation 
system (TS), and the community, by defining three agents, including an 
EPSS operator, TS operator and community administrator [31]. 

The system dynamics (SD) modeling approach, which is a top-down 
approach for analyzing complex adaptive systems involving in-
terdependencies [34], has also been occasionally applied to CISs anal-
ysis. Feedback loops, stock and flow diagrams are the basic components 
of a SD model [35]. Feedback loops represent the connection and di-
rection of effects between CIS components; Stocks represent quantities 
or states of the system, the level of which is controlled over time by flow 
rates between stocks. In order to establish the causal relationships be-
tween elements of an SD model, modelers require expert knowledge or 
sometimes have to rely on assumptions. Furthermore, extensive data is 
required to calibrate the various parameters and functions of the model. 
These prerequisites coupled with the fact that SD models lack the ability 
to capture component-level dynamics makes this approach difficult to 
adopt for modeling the systemic heterogeneity between CISs [32]. Prior 
research that adopted SD for modeling CISs mostly focused on the sys-
temic interactions between nonphysical systems and CISs rather than 
the interdependencies between different CISs. 

In addition, CISs play a fundamental role in production, trans-
portation and supply of various products on the economical market. 
Economic theory based modeling approaches, more particularly the 
input–output modeling (IOM) [36,37], have therefore been used to 
model CISs. In the event of an external disturbance such as a disaster, if a 
certain CIS is not able to perform its intended functions then the pro-
vision of products that rely on this CIS would be affected. IOM models 
are based on various economic theories and are used in prior research to 
analyze the ripple effect of disasters. There are two main limitations to 
IOM: Firstly, IOM for infrastructure analysis does not provide spatial 
representation of the infrastructure systems; Secondly, IOM models 
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cannot account for the interdependencies at the level of individual 
component of an infrastructure. Therefore, IOM is inadequate for 
modeling heterogeneity of interdependent CISs [33]. 

2.2. Simulation of failure propagation across CISs 

CISs are constantly exposed to risks of various nature such as natural 
and man-made disasters. Estimation of potential disaster impacts on the 
CISs is of significant importance to disaster risk reduction. This requires 
that failure propagation across interdependent CISs be taken into 
consideration. Hence, prior research has looked into this issue and 
proposed different simulation models, most of which are essentially 
based on existing CISs modeling approaches, to investigate the mecha-
nisms of failure propagation across CISs. 

Earlier research modeled interdependent CISs as multilayered 
network systems, based on which several TB approaches were proposed 
to simulate failure propagation [7]. According to the TB approach, 
failure of a node would lead to the failure of all edges connected to the 
node and vice versa [7]. A typical model based on the TB approach is the 
percolation model [38], which is widely adopted to analyze the topo-
logical failure of multilayered interdependent infrastructure networks. 
In order to more accurately represent both the topological and func-
tional impact of failure propagation across CISs, the concept of artificial 
flow index was introduced into network models to describe the func-
tional behavior of CISs. Mainstream artificial flow indices used in 
literature include betweenness [38] and number of shortest paths [39]. 
Based on these artificial flow indices, several models that adopted 
overload damage mechanisms were proposed to simulate the failure 
propagation across interdependent CISs [40]. These models assume that 
each component in the network has an optimal load capacity and would 
fail when the actual load reaching the component exceeds this capacity. 
Although more recently researchers have attempted to use real flow 
indices such as water flow rate and current flow rate to describe the 
operational characteristics of CISs, which led to the development of 
several real flow based (RFB) models [41], the applicability of these 
models is largely limited. This is mainly because it is highly difficult to 
accurately model real flow within the CISs [42]. As a result, AFB models 
are used in the vast majority of existing studies, such as 
betweenness-based AFB models for power systems [37] and maximum 
flow models for water supply systems [43]. 

Another existing practice for analyzing failure propagation is the use 
of flow equilibrium models that also consider overload damage mech-
anisms. However, the critical conditions for component failure which 
are at the core of the failure propagation mechanisms are usually set 
subjectively [44]. This largely limits the reliability of the simulation 
outcomes of these models. In addition, other modeling approaches such 
as ABM, SD and IOM also provide some references for analysis of failure 
propagation. However, most related studies that adopted these ap-
proaches rather focused on the interactions between different CISs or 
between CISs and economic system or social systems [45–47]. Little 
attention has been paid to develop effective failure propagation models 
using these approaches. 

All existing approaches for modeling failure propagation across CISs, 
as reviewed above, are further assessed and compared based on four 
criteria, including effectiveness, complexity, maturity and replicability:  

● Effectiveness: this criterion measures the ability of a modeling 
approach to accurately model the failure propagation. This rating 
criterion is adapted from Ref. [20] and includes three levels as fol-
lows: low, moderate and high. The failure propagation of CISs in-
cludes two aspects, namely topological failure and functional failure 
[7,23]. The main characteristics of the topological failure are the 
number of failure paths [48], the rate of failure nodes [7], and the 
phase transition in the percolation process [19]. The main charac-
teristics of the functional failure are the flow reduction rate [12], the 
location of overload damage [49], and the extent of functionality loss 

[50]. Accordingly, low effectiveness means that only a few charac-
teristics of failure propagation, mainly the topological characteris-
tics, can be modeled. Moderate effectiveness means that most 
characteristics of topological failure and a few characteristics of 
functional failure can be modeled. High effectiveness means that the 
characteristics of both topological failure and functional failure can 
be modeled;  

● Complexity: this criterion mainly measures the computational cost in 
modeling the failure propagation. This rating criterion is adapted 
from Ref. [14,20] and includes three levels as follows: low (less than 
1 s), medium (several seconds to several minutes) and high (several 
minutes and above);  

● Maturity: this criterion measures the development level of each 
approach. Adapted from Ref. [14,20], this criterion uses the number 
of relevant publications in the literature to assess an approach’s level 
of maturity, and includes three levels as follows: low (less than 10 
publications), medium (10–30 publications) and high (more than 30 
publications);  

● Replicability: this criterion measures the difficulty in replicating an 
approach based on available information in the existing literature. In 
theory, the methodology of any peer-reviewed academic publication 
should be replicable. In reality, however, exactly replicating a pre-
viously reported CISs failure propagation model could be challenging 
due to the incompleteness or inaccessibility to input data and unclear 
model details in the literature [20]. As a result, the usability of some 
models proposed in the literature is highly limited. These challenges 
are assessed using the replicability criterion which includes three 
levels: low (hardly replicable), medium (partially replicable) and 
high (fully replicable). 

Based on the criteria listed above, all aforementioned approaches for 
modeling failure propagation are assessed. The results are summarized 
in Table 1. 

The best approach should be of low complexity, high maturity, high 
effectiveness and high replicability. It can be concluded from the com-
parison in Table 1 that none of the existing approaches meets all of the 
above criteria, and that the overall ratings of the AFB approach based on 
these criteria are the closest to the best case. 

In summary, considerable progress has been made in unveiling the 
mechanism of failure propagation across CISs, however, the impact that 
systemic heterogeneity may have on this mechanism is still a relatively 
unexplored area. This is manifested by the fact that existing approaches 
do not fully consider the various systemic heterogeneity factors when 
modeling failure propagation of interdependent CISs. These usually 
oversimplified models fail to incorporate the unique failure response 
patterns of different systems and thus do not reasonably reflect the 
actual failure propagation across interdependent CISs. 

3. Methodology 

Motivated by the aforementioned gap in literature, this study aims to 
assess the impact of systemic heterogeneity on failure propagation 
across the interdependent CISs. While such impact is almost certain to 
vary from case to case, for any given case, this impact can always be 

Table 1 
Assessment of the approaches for modeling failure propagation across CISs.  

Approach Criteria 

Effectiveness Maturity Complexity Replicability 

TB L H L H 
AFB M H M H 
RFB H M H L 
AB M M H L 
SD M M H L 
IOM M M M L 

Note: “L”, “M” and “H” stand for low, medium and high, respectively. 
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measured using a four-step approach as proposed below. Firstly, semi- 
empirical fragility models should be selected for different types of CISs 
components. Secondly, a baseline model of the CISs in question should 
be developed using a representative modeling approach that is typical 
and replicable. Thirdly, all HFs that are likely to impact the failure 
propagation should be identified. A series of improved models should 
then be developed, each incorporating a different HF or a different 
combination of HFs. Lastly, all models should be subjected to a simu-
lated disaster, and the results from each improved model should be 
compared to the results from the baseline model in terms of a set of 
criteria, to assess the impacts of the HFs on the failure propagation 
process and outcomes. The above approach is further explained in the 
remainder of this section, and tested in a case study that is reported and 
discussed in the following sections. 

3.1. Fragility models of CISs components 

The first step of the proposed approach is to select fragility models 
for CISs components. The CISs components have distinct fragility char-
acteristics under different types of disasters such as earthquake, flooding 
and hurricane. Without loss of generalizability, this study focuses on 
seismic fragility models for predicting the failures of components 
impacted by earthquakes. Fragility models for other types of disasters 
can be examined in future research. 

3.1.1. Fragility model of nodes 
For modeling the seismic fragility of CISs components, the peak 

ground acceleration (PGA), namely the motion induced by the seismic 
waves, is the main input parameter used to represent the earthquake 
disaster in simulation. In the event of an earthquake, substations, 
switching stations, groundwater wells and pump stations are likely to 
suffer failures resulting from either the physical damage caused by 
induced ground motions or the destruction of the structural facilities on 
which they depend for functioning. To determine the fragility of the 
infrastructure nodes, this study refers to the HAZUS technical manual 
[51], which is a widely adopted method in prior research for fragility 
analysis of CISs components [48,52]. According to the HAZUS technical 
manual, the damage or limit state k of an infrastructure node, which can 
be categorized as slight/minor, moderate, extensive or complete, is 
determined by the impact of a disaster event on this node and the 
components it depends on. The failure of a network node is defined by 
the seismic response probability of the node’s real damage state 
d achieving or exceeding a certain damage threshold Ck, where k rep-
resents the node’s limit state [52]. This conceptualization of nodal 
fragility allows for network components to exhibit different failure 
modes. For example, the failure of a pumping station can result from 
either its internal damage or from the failure of the electric components 
it depends on for power supply. 

The fragility curves per limit state k are lognormally distributed and 
tabulated using the median mk and the lognormal standard deviation β. 
Specifically, the probability of d exceeding a certain damage state 
threshold Ck can be calculated based on the following equation [52]: 

P(d >Ck|PGA)=Φ
(

ln(GPA) − ln(mk)

β

)

(1) 

The values of parameters mk and β can be selected from the HAZUS 
technical manual. The selection of the limit state capability Ck, which 
determines when the component represented by the node loses its 
complete functionality, depends on the component’s attributes, its sur-
roundings, the damage state of other system components it relies on, and 
its past disaster records [48,53]. 

3.1.2. Fragility model of pipelines 
To determine the fragility of pipeline, this study refers to the method 

proposed by the ALA (American Lifelines Alliance) [54], which is a 

widely adopted method in prior research for fragility analysis for pipe-
line [48,52]. The breakage probability of a water pipe is considered to 
follow the Poisson distribution. The breakage probability can be calcu-
lated as follows under the assumption that at least one breakage occurs 
along the pipe length: 

Pf (t) = 1 − exp
(
− Rf (t) ⋅ l(t)

)
(2)  

where Pf (t) denotes the breakage probability of pipe t, Rf (t) denotes the 
modified repair rate (failures/km) of pipe t under the assumption that a 
repair automatically implies a pipe breakage, and l(t)denotes the length 
of pipe t that is calculated based on the nodes’ geographic coordinates 
[55]. 

Repair rate can be affected by many factors, such as joint type, joint 
materials, pipe attributes, and so on [54]. Hence, the calculation of 
repair rate would require access to a substantial amount of detailed data. 
To simplify this calculation, based on historical earthquake damage 
records, Isoyama et al. [56] related the repair rate to the PGA by 
multiplying certain correction coefficients, which only depend on pipe 
attributes and surrounding soil characteristics, and achieved accurate 
and reliable results. According to Isoyama et al. [56], the damage rate of 
pipe t can be empirically calculated as follows: 

Rf (t) =Cp × Cd × Cg × Cl × R (3)  

where, CpCd, Cg and Cl represent the correction coefficients corre-
sponding to pipe diameter, pipe material, topography and soil lique-
faction condition, respectively, and R represents the standard damage 
rate. The material composition and diameter of each pipe can be ob-
tained from relevant design documents, while the correction coefficients 
can be selected from recommended values in Refs. [56]. The standard 
damage rate R depends on the PGA and material type of the water pipes. 
The most typical types of material include ductile-iron pipe (DIP) and 
cast-iron pipe (CIP), for which the values of R can be calculated using 
Eqs. (4) and (5), respectively [56]: 

R= 1.32 × 10− 6(PGA − 100)1.93 (4)  

R= 2.88 × 10− 6(PGA − 100)1.97 (5)  

3.2. Artificial flow-based network model 

The second step of the proposed approach is to model the CISs in 
question using a representative modeling approach. The selection of the 
approach is based on the four criteria described in Section 2.2. Specif-
ically, in the best case, the selected approach should be of low 
complexity, high maturity, high effectiveness and high replicability. 
While none of the existing approaches meets all these criteria, as shown 
in Table 1, the ratings of AFB approach in the four criteria are the closest 
to the best case. The AFB approach shows medium complexity, high 
maturity, medium effectiveness and high replicability. The AFB 
approach is thus selected for this study. The modeling of CISs using the 
AFB approach is described in detail below. 

The set S of all interdependent CISs can be expressed in the form S =

{S1,…,Sa,…,SN}(1 ≤ a ≤ NN ≥ 2), where N denotes the total number of 
systems. A CIS can be represented using a matrix Sa = (Va, Ea). The 
column elements Va represent the system nodes while the row elements 
Ea represent the system links. The flow relationship Rik

a between nodes i 
and k in Sa can be expressed as follows: 

Rik
a =

{
1
0

if there is flow from node i to node k
if there is no flow from node i to node k (6) 

When the interdependencies between CISs are taken into consider-
ation, they can be described as unidirectional dependency links between 
CISs. Interdependency Iij

∀a,b∈S between node i in Sa and node j in Sb can be 
expressed as follows: 
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Betweenness is a widely used index to represent the flow within a 
system [38]. In a CISs network, there may exist more than one shortest 
path from node i to node k. Let BV(t) denote the betweenness of node t, 
which is defined as: 

BV(t) =
∑

i∕=k,i∕=t,k∕=t,

gt
ik

gik
(8)  

where gik denotes the number of shortest paths starting from node i and 
ending at node k, and gt

ik denotes the number of shortest paths from node 
i to node k and passing through node t. The shortest path between two 
nodes in a network is one in which the total sum of the edges is minimum 
[57]. 

BV(t) is used as an approximation of load LV(t) that flows through 
each node [38]. BV0(t) is the initial load of node t, which is assumed to 
be the normal state, with full operational capacity, of a CIS [38,58], and 
is calculated based on Eq (8). It is also assumed that the capacity of node 
t, CV(t), is proportional to the initial load BV0(t)[38]: 

CV(t) = (1+ β)⋅BV0(t) (9)  

where β>0 is the tolerance parameter. Tolerance refers to a system’s 
capacity to endure the effects of disaster. Its value depends on a range of 
factors such as robustness of system, resistance of physical components 
and so on. While there is no rule of thumb to determine the value of β for 
any given CIS, prior research adopted different values that generally 
ranged between 0 and 0.5 [38,58]. 

Failure propagation in AFB models involves two main steps, namely, 
overload damage of components and flow redistribution. For any node t 

in the network, if its actual load BV(t) exceeds its capacity CV(t), the 
node will experience overload damage. The failed node is automatically 
removed from the network and the betweenness value of every other 
node in the redistributed network is recalculated and updated. The 
above process is repeated iteratively until the actual load at every node 
in the network does not exceed its capacity. Fig. 1 illustrates the 
computational process of failure propagation across the interdependent 
physical networks. 

3.3. Improved models 

Failure propagation through CISs is affected differently by different 
HFs. This section first describes how the HFs can be identified, and then 
explains how to develop improved variants of the above baseline model. 
Model improvement is done by incorporating different HFs in order to 
assess their respective impacts on failure propagation. It should be noted 
that although CISs may be heterogeneous in a variety of aspects, only 
HFs that can affect the failure propagation are considered in this study 
[10]. 

Every CIS can be described based on four main dimensions, including 
physical network features [7], transported material properties [15], 
operational mechanisms [5] and disaster response patterns [3]. 
Accordingly, the systemic heterogeneity factors among different CISs 
may arise from the following four dimensions:  

● Heterogeneity in physical network features (H1): CISs are generally 
represented as networked systems; however, these networks may 
have significantly different features [59]. Such features include 
physical attributes and laws governing interactions within the 

Fig. 1. Flowchart of the computational process of failure propagation in the interdependent CISs network.  

Iij
∀a,b∈S =

⎧
⎨

⎩

1
0
− 1

if node i (i ∈ Va) is dependent on node j (j ∈ Vb)

if there is no relationship between node i (i ∈ Va) and node j (j ∈ Vb)

if node j (j ∈ Vb) is dependent on node i (i ∈ Va)

(7)   
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network, e.g. average network degree, power-law distribution and 
exponential distribution;  

● Heterogeneity in transported material properties (H2): Every CIS is 
designed to transport a specific type of material or information [15]. 
Heterogeneity of transported material properties refers to the dif-
ference in the intrinsic properties of these materials, e.g. the flow of 
water in pipelines is at a completely different speed than the flow of 
current in powerlines; 

● Heterogeneity in operational mechanism (H3): Operational mecha-
nism refers to the process of establishing and arranging clear ways to 
operate CISs [15]. Heterogeneity of operational mechanism refers to 
the differences in operational methods, environment, conditions and 
component glitches. For example, during the operation of a power 
supply system, power cables and other electric components release a 
considerable amount of heat due to current flow and resistance of the 
wires, whereas in water supply systems, water leakages at pipe 
connections can be observed during operation. Both types of leaks 
may affect components in their proximity;  

● Heterogeneity in disaster response patterns (H4): Every CIS has a 
unique disaster response pattern. Heterogeneity of disaster response 
patterns refers to the difference in the response behavior of CISs to 
disasters. For example, in the event of an earthquake, node compo-
nents of the power supply system are more prone to experience 
failure than the links. This is because the links (power cables) are 
flexible enough to overcome the induced motion from seismic waves 
without suffering damage; in a water supply system on the other 
hand, the links (water pipes) are mostly rigid elements and thus both 
the nodes and the links are susceptible to rupture and other forms of 
motion related damages. 

The above four heterogeneity dimensions are used to guide the 
identification of the systemic heterogeneity factors following three 
steps. Firstly, all potential HFs and their possible impact on failure 
propagation should be identified through the review of academic pub-
lications, as well as professional operation manuals, operational stan-
dards and historical maintenance records of the CISs being studied. 
Secondly, face-to-face interviews with professionals in related fields 
should be conducted to verify whether the above-identified factors and 
impacts are relevant and consistent with reality. Lastly, the set of 
identified HFs should be reviewed and adjusted to fit the scope of the 
present study by discarding factors that have already been well under-
stood in prior research and those that cannot be properly accounted for 
in an AFB network model. An example of an obvious HF that has been 
considered in prior research and is thus discarded in this study is the 
difference in average network degree of each CIS network [18], which is 
a typical HF classified under heterogeneity in network feature of 
different CIS (H1). 

Based on the failure propagation mechanism of baseline model, a 
series of improved models can then be developed by factoring in the HFs. 
The settings of the baseline model should first be determined based on 
modeling details provided in prior research as well as the actual con-
ditions of the CISs being studied. Improved models should then be 
developed for each individual HF by making appropriate adjustments to 
the model settings, such as network representation, initial damage 
location, node capacity and flow calculations. Other settings should be 
left unchanged and identical to the baseline model settings. Lastly, since 
failure propagation may be simultaneously affected by multiple HFs, 
improved models that consider multiple HFs at a time should also be 
developed. In these cases, all relevant model settings should be adjusted 
in a similar manner as when single HFs are considered. 

3.4. Impact metrics 

According to prior research [38], failure propagation through a 
system can be characterized from three main aspects, namely, the time 
the system takes to reach a new steady state after being affected by the 

disaster, the difference between the final steady state and the original 
state, and the failure propagation routes as it transitions from the orig-
inal state to the new steady state. Therefore, the overall impact of HFs on 
the failure propagation of interdependent CISs can be assessed from 
three aspects, including, the failure propagation time [2], the failure 
propagation scale [38], and the failure propagation sequence [60]. 
Accordingly, three metrics are proposed in this study to assess these 
impacts, as explained below. 

Failure propagation time refers to the time the system takes to reach 
a steady state after being affected by disaster [2]. While measuring the 
actual time in CISs models is challenging, a commonly used proxy for the 
propagation time is the number of iteration steps in the simulation for 
the system to reach a post-disaster steady state. Taking η0and ηto be the 
failure propagation time in the baseline model and an improved model 
respectively, the impact of HFs on failure propagation time, denoted as 
p1, can be calculated as follows: 

p1 =
η − η0

η0
(10) 

A value p1 = 0 indicates that the HF considered for simulation has no 
impact on failure propagation time, otherwise, a positive or negative 
value indicates that the HF either increases or reduces failure propaga-
tion time, respectively. 

Failure propagation scale, denoted as λ, can be described as the rate 
of path losses in the CISs [38]. 

λ=
θ − θ’

θ
(11)  

where θ and θ’are the number of functional paths within the system 
before and after the disaster occurs respectively. Taking λ0 and λ to be 
the failure propagation scale results obtained from the baseline model 
and an improved model respectively, the impact of HFs on failure 
propagation scale, denoted asp2, can be calculated as follows: 

p2 =
λ − λ0

1 − λ0
(12) 

A value p2 = 0 indicates that the HF considered for simulation has no 
impact on failure propagation scale, otherwise, a positive or negative 
value indicates that the factor either increases or reduces failure prop-
agation scale, respectively. 

In addition, HFs may affect the failure propagation sequence of CISs, 
which is composed of the failure propagation step at which each node 
fails (operational nodes maintain the initial failure propagation step 
value 0) [60]. The failure propagation sequence through each CIS can 
therefore be denoted as a vectorθ = (o1,⋯,om,⋯,on), where om refers to 
the averaged failure propagation step at which node m fails. The vector 
θ0 = (o0

1,…, o0
m,…, o0

n) is taken to be the propagation sequence obtained 
from the baseline model. The comparison results of failure propagation 
sequence between the baseline and improved models, denoted as a 
vectorπ = (τ1,⋯, τm,⋯, τn), can be expressed as follows: 

τm =

{
1 if om = o0

m

0 if om ∕= o0
m

(13) 

The number of nodes that fail at the same failure propagation step in 
both the baseline and improved models, denoted asn’’, can be calculated 
as follows: 

n’’= sum(π) (14) 

Then, the impact of HFs on failure propagation sequence, denoted as 
p3, can be calculated as follows: 

p3 =
n − n˝

n
(15) 

A value p3 = 0 indicates that the HF considered for simulation has no 
impact on the failure propagation sequence, otherwise, a positive value 
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of p3 indicates that the factor notably impacts the failure propagation 
sequence. 

4. Case study 

4.1. Case description 

A case study of the interdependent water and power supply systems 
at Tsinghua University campus was conducted to illustrate the impact of 
systemic heterogeneity on failure propagation across the CISs. Located 
in the Haidian district of Beijing, the campus has an area of approxi-
mately 4 km2 and hosts a population over 60,000. The case study 
focused on the water and power supply system due to the following 
reasons: Firstly, drinking water and electric power are the most critical 
resources needed by any city or community in order to sustain its 
operation. Secondly, the interdependency between water and power 
supply systems is bidirectional, which makes the coupling of these two 
systems a representative case for studying failure propagation across 

interdependent CISs. Lastly, these two systems are widely modeled in 
prior research, thus studying them could address an issue that is of 
significant concern in the existing literature. 

Fig. 2. Layout of the case systems.  

Table 2 
Summary of the facilities and connections in the case systems.  

System Facility (acronym and 
count) 

Link (number) 

Connectivity 
within systems 

Dependency 
between systems 

Power 
supply 
system  

• Electric substation - 
110kv-10kv (ES,1)  

• Switching station 
(SS,12)  

• End user (EU,29)  

• Power cable 
(51)  

• Water pipe (1) 

Water 
supply 
system  

• Groundwater well 
(GW,13)  

• Pump station (PS,13)  
• End user (EU,18)  

• Water pipe (83)  • Power cable 
(13)  
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The number and location of each CIS’s facilities as well as the links 
between them were obtained from available design documents of both 
systems. The water source of the campus consists of 13 groundwater 
wells, suggesting that the water supply system on campus is self- 
sufficient and completely independent of the external municipal water 
supply system. On the other hand, the campus has no power plant and 
relies entirely on the municipal power supply system for electric power 
supply via a single 110 KV power cable. 

Fig. 2 illustrates the layout of both systems superimposed over the 
campus map. All facilities and major components of the two systems, 
such as groundwater wells, pump stations and electric substations, were 
regarded as nodes, whilst power cables and water pipes were regarded 
as links. A total of 86 nodes and 148 links were identified, as summa-
rized in Table 2. Nodes belonging to the power supply network were 
labeled nodes 1 through 42, and those belonging to the water supply 
system were labeled nodes 43 through 86. The power supply for the 
water pump station and the cooling water supply for the power sub-
station are two types of dependency relationships existing between the 
systems. Details on the related components were determined from the 

design documents of each CIS. The layout of the dependency links be-
tween the two systems is illustrated in Fig. 3. 

4.2. Heterogeneity factors 

Following the review of all relevant documents and the face-to-face 
interviews with professionals and management teams from the logistics 
management department of the university, a total of 12 HFs were 
identified. These HFs are listed as follows:  

• HF 1: Difference in average node degree of each CIS;  
• HF 2: Difference in node degree distribution of each network;  
• HF 3: Difference in storability of transported materials;  
• HF 4: Difference in flow velocities of transported materials;  
• HF 5: Difference in system glitches during operation;  
• HF 6: Difference in available backup components;  
• HF 7: Difference in system susceptibility to overload damage;  
• HF 8: Difference in tolerance to disaster impacts;  
• HF 9: Difference in locations of the main physical damage; 

Fig. 3. Dependency links between the water and power supply systems of the case.  
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Table 3 
Summary of the systemic heterogeneity factors.  

HD HF Description of HF Possible impact on failure propagation Whether 
considered in 
prior research 

Modelability 
using AFB 
approach 

H1: HF 
1 

This HF suggests that different system networks have 
different average node degree due to differences in layout, 
sparseness, number of nodes and edges. 

A large value of average node degree indicates that a failed 
node will trigger the failure of many links and perhaps lead 
to large failure propagation scale. 

Yes H 

HF 
2 

This HF suggests that the node degree distribution of 
system networks differs due to differences in network 
feature. For example, some CIS networks may follow 
power-law or exponential distributions. 

Power-law networks display a surprisingly high degree of 
tolerance to damages, a property not shared by their 
exponential counterparts, which will affect failure 
propagation through interdependent CISs. 

Yes H 

H2: HF 
3 

This HF suggests that the storability of transported 
material differs among CISs due to differences in 
transported material attributes. For example, the water 
supply system transports water that can be stored for a 
period of time, whereas the electric power transported 
through the power supply system cannot be stored on a 
large scale. Electric power is produced and distributed in 
response to the end point demand. 

A storable transported material can help delay the failure 
of the related CIS, thus decreasing the overall disaster 
impact. 

No M 

HF 
4 

This HF suggests that the flow velocities of transported 
materials differ among CISs due to various material 
attributes. For example, Electric current flows at the speed 
of light whilst water flows at a much slower speed. 

Difference in flow velocities of CISs may cause differences 
in individual failure patterns which in turn may affect the 
overall disaster propagation paths. 

No L 

H3: HF 
5 

This HF suggests that different CISs experience different 
types of glitches during operation due to differences in 
operation conditions, surroundings and mechanism. For 
example, water supply system is likely to suffer from 
leakages, whilst power supply system rather suffers from 
heat release during operation. 

In areas where the water and power networks are in close 
proximity, the water leaks may affect the power system 
components. Likewise, the heat released from the electric 
components may heat up adjacent water pipes and perhaps 
cause them to swell or burst open. 

No L 

HF 
6 

This HF suggests that the availability of backup 
components differs among CISs due to various constraints. 
For example, some important node pairs in the power 
supply system are linked by two parallel lines, one acting 
as a backup link. Whilst there is only one water pipe 
between any node pairs of the water supply system. 

The backup link of the power supply system enhances the 
robustness of the system and provides effective protection 
against failure of important nodes. 

No M 

H4: HF 
7 

This HF suggests that different CISs have different 
component susceptibility to overload damage. For 
example, flow redistribution in power supply system under 
disaster can cause overload damage of components. It is 
usually not the case in water supply system because proper 
technical or managerial measures can be taken in a timely 
manner to avoid the amplification of failure effects. 

If the failure propagation conditions are not accurately 
described, then it is difficult to evaluate the disaster impact 
on the whole network. 

No H 

HF 
8 

This HF suggests that system capacity to endure the effects 
of disaster differs among CISs. This tolerance to disaster of 
systems vary based on their network features, operation 
mechanisms, etc. 

The failure impact of different CISs is strongly related to 
their tolerance to disaster, which will affect the failure 
propagation path. 

No H 

HF 
9 

This HF suggests that the locations of the main physical 
damage differ among CISs due to differences in the 
attributes of physical components and disaster 
characteristics. For example, in power supply system, 
physical damage mainly occurs at nodes since the buried 
cables are flexible enough to withstand the disaster. Water 
supply system on the other hand is prone to experience 
physical damages at both nodes and edges. 

If the precise damage locations cannot be determined, the 
initial state of simulation will be inaccurate and hence will 
generate an incorrect disaster impact result. 

No H 

HF 
10 

This HF suggests that different CISs have different 
serviceability conditions due to differences in operational 
mechanism. For example, the water supply system is not 
completely dependent on the support from the power 
supply system and can continue functioning even when 
power supply is insufficient since water can also rely on 
gravity to ensure continuous flow. However, the power 
supply system will lose its functions when the support from 
the water supply system is less than a certain proportion. 

If the serviceability conditions of each CIS are not properly 
considered, the resultant disaster impact might be an 
overestimation of actual values. 

No M 

HF 
11 

This HF suggests that the way and speed at which failed 
components are cut off from the system differs among CISs 
due to differences in degrees of automation. For example, 
failed components in water supply system are cut off 
manually by detecting and closing the related upper 
valves, whereas failed components in power supply system 
are cut off automatically by relay protection equipment. 

A manual cutoff is slow but accurate whilst using relay 
protection equipment is fast but less accurate. This 
difference has a great impact on the failure propagation 
scale of interdependent CISs under disaster. 

No L 

HF 
12 

This HF suggests that flow rate variations under disaster 
differs among CISs due to differences in operation 
mechanism. For example, flow rate through the water 
supply system does not increase under disaster, whilst 
voltage or current flow may alternate under disaster. 

Flow rate variation is an important variable in determining 
the performance of the system. If the variations are not 
accurately measured, it will result in inaccurate 
measurements of disaster impact. 

No L  
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• HF 10: Difference in serviceability conditions;  
• HF 11: Difference in the way and speed at which failed components 

are cut off from the system;  
• HF 12: Difference in flow rate variations when impacted by disaster. 

Table 3 summarizes these 12 HFs by presenting their detailed de-
scriptions, possible impact on failure propagation across CISs, whether 
they have been considered in prior research, and their modelability 
using the AFB network model. The modelability was analyzed and rated 
“L” (low), “M” (medium), or “H” (high). Factors that were not rated “H” 
were excluded from further investigation due to limited modelability. In 
addition, all HFs belonging to H1 were also excluded since they were 
relatively well understood in prior research. Therefore, only HF 7, HF 8 
and HF 9 were analyzed in the following analysis. 

4.3. Development of the improved models 

Following the steps described in Section 3.2, a total of seven 
improved AFB models were developed by incorporating HF 7, HF 8 and 
HF 9 into the baseline model. These models are summarized in Table 4 
and explained in detail below. In addition, according to the seismic 
ground motion parameters zonation map of China [61], the PGA of 
Beijing is 0.3g, where g is taken as 10 m/s2. Hence, the disaster input of 
all models was set as 0.3g. 

In Model 0 (the baseline model), overload damage may occur in both 
the power supply system and the water supply system. The tolerance 
parameters of both systems were set as 0.02 based on the National 
Standard of Admissible Deviation of Supply Voltage in China [62]. 
Failure was set to only occur at the nodes. Based on the fragility model 
presented in Section 3.1.1, the probability of complete loss of func-
tionality of every component can be determined. Accordingly, the state 
of every component was randomly generated 1,000 times based on their 
probability of complete loss of functionality. As a result, 1,000 different 
network inputs of Model 0 were simulated. 

Model 1 was built to simulate failure propagation across the CISs 
while considering HF 7. HF 7 suggests that overload damage due to flow 
redistribution would not occur in the water supply system and therefore, 
components in the water supply system could only be physically 
damaged by earthquake-induced ground motion. The corresponding 
model setting that needed to be modified in order to account for HF 7 in 
this improved model was the tolerance parameter of the water supply 
system β(w). The value of β(w) in Eq. (4) was set to a very large value of 
10, which was determined after several test simulations. This large value 
of β(w) ensured that the actual artificial flow of one node never exceeded 
its capacity and thus no overload damage could occur. The tolerance 
parameter of the power supply system β(p) was kept as 0.02. Similar to 
Model 0 above, the probability of complete loss of functionality of 
components had to be considered and thus, 1,000 different network 
inputs of Model 1 were simulated. 

Models 2a and 2b were built to simulate failure propagation across 
the CISs while considering HF 8. HF 8 suggests that tolerance to disaster 
is system-specific and may differ from one system to the other. However, 
determining the actual tolerance parameter of each system would have 
been a complicated experiential task lying beyond the scope of this 
study. Hence, a tolerance value of 0.06 was set for the power supply 
system in Model 2a, and the same tolerance value of 0.06 was set for the 
water supply system in Model 2b. In both models, the tolerance param-
eter of the other system was kept as 0.02. Similar to Models 0 and 1 
above, the probability of complete loss of functionality of components 
had to be considered and thus, 1,000 different network inputs of Model 2 
were simulated. 

Model 3 was built to simulate failure propagation across the CISs 
while considering HF 9. HF 9 suggests that water pipes in the water 
supply system are also likely to be damaged by earthquake-induced 
ground motion. In order to describe the functional or damaged state of 
each water pipe under an earthquake event, the input matrix, derived 

from Eqs. (6) and (7), was randomly generated 1,000 times while 
considering the breakage probability of each pipe determined in Section 
3.1.2. If the state of a pipe t was operational, the related element Ra 
orI∀a,b∈S took the value of 1, otherwise, the element took the value of 0. 
Finally, the state of each pipe had to be consistent with its breakage 
probability. The main modification that needed to be applied to the 
baseline model setting in order to account for HF 9 in this improved 
model was the integration of a random input matrix as model input. As a 
result, 1,000 different network inputs of Model 3 were simulated, which 
simultaneously considered the random generation of the state of system 
components and pipelines. 

Model 4 was built to simulate failure propagation across the CISs 
while considering both HF 7 and HF 9. This means the model considered 
that overload damage due to flow redistribution would not occur in the 
water supply system and that the water pipes were likely to be damaged 
by the earthquake-induced ground motion. The model settings were 
modified and the model inputs were generated the same way as in 
Models 1 and 3. 

Models 5a and 5b were built to simulate failure propagation across 
the CISs while considering both HF 8 and HF 9. These two models 
considered not only that the tolerance to disaster parameter is system- 
specific, but also that water pipes were likely to be damaged by the 
earthquake-induced ground motion. The model settings were modified 
and the model inputs were generated in the same way as in Models 2a, 2b 
and 3. 

5. Assessment results and analysis 

Based on the component attributes, damage of dependent system, 
surroundings and past disaster records, the facility nodes (nodes 14, 29, 
39 and 41) of the power supply system, which were located in the west 
or southwest of Tsinghua campus, would completely loss their func-
tionality when the damage state exceeded the “minor damage” 
threshold. This was because the above-mentioned facilities and depen-
dent building were decades old and highly vulnerable. The other facility 
nodes (nodes 1, 3, 6, 17, 21, 22, 23, 26 and 27) of the power supply 
system, which were located in the east of Tsinghua campus, would 
completely lose their functionality when the damage state exceeded the 
“moderate damage” threshold. With regard to the water supply system, 
nodes 43, 44, 61 and 62, which were located in the southwest and 
northwest of Tsinghua campus, would completely lose their function-
ality when the damage state exceeded the “minor damage” threshold, 
due to the structural vulnerability of the associated facilities. Nodes 63, 
64, 65and 67, which were located in the east of Tsinghua campus, would 
completely lose their functionality when the damage state exceeded the 
“extensive damage” threshold. The remaining nodes (nodes 45, 46, 47, 
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 and 60) of the water supply 
system would completely lose their functionality when the damage state 
exceeded the “moderate damage” threshold. The probability of a 
component exceeding a certain damage threshold was determined based 
on methods described in Section 3.1.1. The state of every component 
was randomly generated 1,000 times based on their probability of 
complete loss of functionality. 

All improved models were built and simulated using MATLAB. The 
impacts of the HFs on failure propagation were then assessed based on 
the simulation results using the impact metrics explained in Section 3.4. 
The impact assessment results were calculated as the mean of results 
from all simulations. The results are described in detail below. 

5.1. Failure propagation time and scale 

Based on the simulation results, the failure propagation pattern 
through the coupled systems was recorded for each model, as illustrated 
in Fig. 4. 

As observed in Fig. 4, the models generated different failure propa-
gation patterns under the same earthquake scenario. In the baseline 
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model (Fig. 4 (a)), the coupled CISs reached a steady state after five 
propagation steps and 99.96% of the paths were damaged. In Model 1 
involving HF 7 (Fig. 4 (b)), four propagation steps were necessary to 
bring the system to a steady state and the rate of damaged paths 
decreased to 99.72%, as 2,646 more paths survived under the disaster 
than in the baseline model. The impact of HF 7 was significant as indi-
cated in Fig. 4 (b). In Model 2a (Fig. 4 (c)) where the tolerance param-
eters of the power and water supply systems were set at 0.02 and 0.06 
respectively, 99.93% of the paths were damaged; whereas in Model 2b 
where the tolerance parameters of the power and water supply systems 
were set at 0.06 and 0.02 respectively, 99.94% of the paths were 
damaged. The rate of surviving paths and propagation steps observed in 
Models 2a and 2b were close to those of the baseline model, which 
indicated that the impact of HF 8 was relatively insignificant. On the 
other hand, the impact of HF 9 in Model 3 (Fig. 4 (d)) was significant 
because it was observed that more paths were damaged in the first 
iteration step compared to the baseline model. This indicated that more 
paths were lost when the pipeline damage was taken into consideration. 
Accordingly, the failure propagation time of Model 3 increased to 6 (the 
final rate of surviving paths calculated after the last iteration step was 
very close to 0), which was greater than that of the baseline model. The 
result of Model 4 (Fig. 4 (e)) was notably similar to that of Model 1, 
suggesting that the impact of the combination of HF 7 and HF 9 was 
significant, and that HF 7 was more influential than HF 9. Lastly, the 
results of Models 5a and 5b (Fig. 4 (f)) were slightly different from those 
of the baseline model, showing a similar pattern to when only HF 8 was 
considered. 

In summary, comparing the results from all improved models, it was 
observed that four to six failure propagation steps were completed 
before the whole system would reach a new steady state. The fastest 
failure propagation was observed in Models 1 and 4, totaling four steps, 
and the slowest failure propagation was observed in Models 3, totaling 
six steps. With regard to failure propagation scale, most paths failed at 
the first failure propagation step and only a few paths remained oper-
ational after several failure propagation steps in all models. 

5.2. Failure propagation sequence 

The failure propagation sequence in each model can be illustrated 
using the simulation results. All models have different possible propa-
gation sequence since these models were subjected to 1,000 different 
network inputs. Nevertheless, in order to likewise illustrate a single 
representative propagation sequence for these models, the failure 
propagation sequence of each model was chosen to be the sequence with 
the highest frequency (i.e. that appears the most) over the 1,000 
different simulations. The results are summarized and illustrated in 
Fig. 5. 

As observed in Fig. 5, amongst all other failed nodes, eight nodes 

(nodes 14, 17, 29, 44, 46, 51, 58, 64) commonly failed in all models. The 
components represented by nodes 14, 17 and 29 were switch stations of 
the power supply system. The electric substation represented by node 1, 
which was the most important component in the power supply system, 
did not fail in any of the models. This indicated that the electric sub-
station serving the campus was highly reliable. Four pump stations 
(nodes 44, 46, 58 and 64) and one groundwater well (node 51) failed in 
all models. This indicated that these components were highly vulnerable 
under earthquake. It could also be observed from Fig. 5 that there is a 
considerably larger number of circle-shaped failed nodes than diamond- 
shaped failed nodes, which indicates that the water supply system suf-
fered much more damage than the power supply system. In addition, 
most damaged nodes were found in the west side of Tsinghua campus, 
which is an area where most of the century-old buildings and older 
components of the campus’ power and water supply systems are located. 
This explains their greater vulnerability to external disturbances such as 
earthquakes. 

5.3. Impact assessment results 

Based on the simulation results described above, the impact metrics 
were calculated for each model, and the results are summarized in 
Table 6. 

The results summarized in Table 6 showed that the systemic het-
erogeneity indeed had a significant impact on failure propagation across 
CISs, with each heterogeneity factor affecting the propagation in a 
different way. Based on the results, it could be concluded that the CISs 
reached a new steady state rather quickly after being impacted by the 
earthquake. HFs 7 and 9, incorporated in Models 1 and 4, had the largest 
impact on propagation time, whilst the impact of HF 8 was negligible. 

With respect to the failure propagation scale, HF 7 had the largest 
impact as observed from results of Model 1. In the baseline model, a total 
of 530 paths survived. However, when HF 7 was considered, a total 
3,177 paths survived. This indicated that the disaster impact was 

Table 4 
Details of the improved models.  

Model # Difference in system susceptibility to overload damage (HF 7) Difference in failure tolerance (HF 
8) 

Difference in locations of the main physical damage (HF 9) 

β(p) = 0.02; 
β(w) = 0.06 

β(p) = 0.06; 
β(w) = 0.02 

0 (baseline) – – – – 
1 ✓ – – – 
2a – ✓ – – 
2b – – ✓ – 
3 – – – ✓ 
4 ✓ – – ✓ 
5a – ✓ – ✓ 
5b – – ✓ ✓ 

Note: β(p) is the tolerance parameter of power supply system; β(w) is the tolerance parameter of water supply system. The default tolerance parameter value of both 
systems is 0.02. 

Table 6 
Summary of the impact assessment results for all improved models.  

Model Impact on failure 
propagation timep1  

Impact on failure 
propagation scalep2  

Impact on failure 
propagation 
sequencep3  

0 – – – 
1 − 0.2304 − 4.9606 0.7093 
2a − 0.0065 − 0.3338 0.6977 
2b − 0.0031 − 0.1058 0.6977 
3 − 0.0350 0.1785 0.7209 
4 − 0.2477 − 4.7319 0.7209 
5a − 0.0357 0.0462 0.8256 
5b − 0.0252 − 0.5000 0.7907  
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Fig. 4. Failure propagation pattern observed in each improved model in comparison to the baseline model.  
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overestimated by the baseline model simulation. 
With regard to the failure propagation sequence, the largest impact 

was observed from Model 5a, which indicated that the combination of 
HF 7 and HF 9 had the largest impact on the failure propagation 
sequence across the CISs. On the other hand, Models 2a and 2b which 
considered HF 8 had the least impact on the failure propagation 
sequence. 

5.4. Sensitivity analysis 

Global sensitivity analyses of the impact assessment results, to three 
input parameters were conducted. The sensitivity analyses were per-
formed by varying one parameter of the baseline model while keeping 
other parameters constant. Three input parameters, including the 
tolerance values of both systems and the PGA value, were considered in 
the analyses due to their potentially significant impact on the simulation 
results. When performing the sensitivity analysis on the tolerance of one 
system, its value was varied from 0 to 0.5, taking intervals of 0.02, while 
the tolerance of the other system was kept at a constant value of 0.02. 
When performing the sensitivity analysis on the PGA, three typical 
values, including 0.2g, 0.3g and 0.4g, were simulated. 

5.4.1. Sensitivity analysis of impact assessment results to the tolerance 
parameter 

With respect to the impact on failure propagation time (p1), the 
simulation results showed that it had an overall decreasing trend when 
either tolerance value increased, as shown in Fig. 6 (a). The value of p1 
decreased faster when β(p) was fixed as 0.02, which suggested that the 
impact on failure propagation time was relatively more sensitive to the 
tolerance of the water supply system. 

With respect to the impact on failure propagation scale (p2), as 
shown in Fig. 6 (b), its value slightly decreased when β(p) was fixed at 
0.02 and β(w) exceeded 0.04, slightly bounced back at β(w) = 0.12, and 
remained steady afterwards. On the other hand, when β(w) was fixed at 
0.02, the value of p2notably decreased when β(p) exceeded 0.06, 
bounced back twice at β(p) = 0.1 and β(p) = 0.26, and remained steady 

afterwards. The wider range and more complex pattern of variability 
observed in the values of p2when β(w) was fixed at 0.02 suggested that 
p2 was relatively more sensitive to the tolerance parameter of the power 
supply system. The simulation results are presented in Fig. 6 (b). 

As for the impact on failure propagation sequence (p3), the sensi-
tivity analysis results revealed an even more complex trend compared to 
those from the other two metrics. The values of p3 repeatedly increased 
and decreased in a wavelike pattern when either tolerance value 
increased. The range of values of p3 was very concentrated between 0.69 
and 0.76, which suggested that p3 was generally insensitive to the var-
iations in tolerance parameter of both the water and the power supply 
system. The simulation results are presented in Fig. 6 (c). 

In summary, it can be inferred from the above results that p1 and p2 
were sensitive to variations in system tolerance values, revealing clearer 
and distinct patterns. This indicated that the impact of HF 8 onp1 and p2 
was non-negligible, and would become more substantial as the value of 
system tolerance increased. When the tolerance value was less than 
0.02, more nodes suffered overload damage since they were more 
fragile, which could explain the positive values of p1 and p2. As the 
tolerance value increased, fewer nodes were damaged as compared to 
the baseline model and thus p1 and p2 turned negative. These results are 
consistent with the hypothesis that the more robust the nodes are, the 
lesser the damage suffered by the network, which indicates that the 
models and parameter settings were reasonable. 

5.4.2. Sensitivity analysis of impact assessment results to the PGA 
Fig. 7 illustrates the results of the sensitivity analysis on the PGA 

value. The analysis was conducted for three typical PGA values, 
including 0.2g, 0.3g and 0.4g. From the analysis results of p1, p2 and p3, 
no particular increasing or decreasing trend was observed in any of the 
improved models when the PGA value was increased from 0.2g to 0.4g. 
The value of p1 was negative in all improved models at PGA value 0.3g, 
which indicated that under this scenario the improved models all 
experienced shorter failure propagation time as compared to the base-
line model. The largest values of p1 and p2 were observed at the PGA 
value of 0.3g in Models 1 and 4, which indicated that HF 7 had the most 

Fig. 5. Failure propagation sequence in each model.  
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significant impact on failure propagation under these scenarios. All 
impact values in Fig. 6 (c) were positive and non-negligible for all 
improved models, which indicated that the failure propagation sequence 
would be notably impacted if HFs 7, 8 and 9 were not considered. In 
addition, the range of values of p2 was much larger than that of p1 and 
p3, which indicated that the sensitivity analysis result to PGA values was 
more prominent for p2. On a side note, all paths in all models suffered 
complete failure at the PGA value of 0.4g, and therefore the impact on 
failure propagation scale under this PGA value was not computable. 

6. Discussions 

Based on the simulation outcomes and assessment results reported in 
the previous section, it can be reasonably inferred that systemic het-
erogeneity has a significant impact on failure propagation across inter-
dependent CISs. This finding is consistent with the findings reported in 
Refs. [6,7,18]. For instance, Buldyrev et al. [7] simulated failure prop-
agation through two tightly interdependent CISs, each modeled using 
power-law degree distribution. In this interdependent network, total 
fragmentation was found above a finite and small fraction of damaged 
nodes, and the more heterogeneous the networks the smaller the dam-
ages that could be sustained before functional integrity was totally 

compromised. This finding strongly supports the main finding of this 
study, which argues that systemic heterogeneity has significant impact 
on failure propagation across CISs. More importantly, by considering the 
heterogeneity of network features (H1), Buldyrev et al. [7] were able to 
achieve high accuracy in disaster impact estimation compared with 
studies that did not consider any systemic heterogeneity [63,64]. It is 
expected that when systemic heterogeneity in the other three di-
mensions (H2, H3 and H4) are also considered, the performance of 
simulation models of failure propagation will be further improved. 

There exist notable differences in the way each heterogeneity factor 
impacted failure propagation through the systems. When HF 7 was 
considered, overload damage of components could occur only in the 
power supply system. As a result, though the initial set of failed nodes in 
the improved model was identical to that in the baseline model (i.e. 
nodes 14, 17, 29, 44, 46, 51, 58 and 64), failure propagation was 
considerably impacted, resulting in a significant decrease in failure 
propagation scale and time in the improved model. In addition, HFs 7 
and 8 were both incorporated in the AFB model by modifying corre-
sponding systems’ tolerance parameters, however, the main difference 
between them was that when considering HF 8, both CISs were still 
susceptible to overload damage of components. As a result, the impact of 
HF 8 on failure propagation time, scale and path was reasonably much 

Fig. 6. Sensitivity analysis of the impact assessment results to system tolerance values.  
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smaller than that of HF 7. HF 9 on the other hand could affect both the 
initial set of failed nodes and failure propagation mechanism of the 
improved model since it incorporated the probability that links could 
suffer damages. This suggested that HF-specific measures may be needed 
to appropriately model the HFs and address their impacts. 

The results from this study indicated that the impact of systemic 
heterogeneity should not be overlooked, otherwise, disaster assessment 
results will be inaccurate. These results also raise the awareness of the 
need for more reasonable and reliable failure propagation modeling 
approaches, which can accurately take into account the systemic het-
erogeneity of different CISs. It is also useful to note that the approach 
introduced in this study could provide theoretical reference on how 
systemic heterogeneity can be identified and considered during the 
modeling process. Moreover, the assessment results can help system 
owners, operators and emergency responders to better understand the 
systemic heterogeneity of CISs. A better understanding of systemic 
heterogeneity would lead to more accurate estimations of disaster 
impact, a better decision support system in the design, construction and 
maintenance of the CISs, and thus enhance the overall preparedness and 
response capabilities of the systems towards disasters. 

7. Conclusions 

Modern CISs are becoming increasingly topologically networked and 
functionally interdependent to ensure their reliable performance. 
Different CISs are heterogeneous in various aspects. This study aimed at 
assessing the impact of systemic heterogeneity on failure propagation 
across interdependent CISs, by comparing simulation results from a 

series of improved AFB models to that from a baseline model. The 
improved models differed from the baseline model in that they consid-
ered different HFs within their model settings while the baseline model 
did not. The results showed that the impact of systemic heterogeneity on 
failure propagation across interdependent CISs was significant. More 
specifically, the combination of heterogeneity in system susceptibility to 
overload damage and heterogeneity in locations of the main physical 
damage had the largest impact on the failure propagation time; Het-
erogeneity in system susceptibility to overload damage had the largest 
impact on the failure propagation scale; The combination of heteroge-
neity in tolerance to disaster impacts and heterogeneity in locations of 
the main physical damage had the largest impact on the failure propa-
gation sequence. Furthermore, the impacts of HFs on failure propagation 
time and failure propagation scale were sensitive to the tolerance 
parameter of the water supply system and power supply system, 
respectively, while the impact of HFs on failure propagation sequence 
was not sensitive to the tolerance parameters of both systems. Finally, 
the impact of HFs on failure propagation was observable under different 
PGA values, and larger PGA values did not necessarily result in larger 
impacts. 

In sum, the results revealed that the systemic heterogeneity could 
amplify or attenuate the overall impact of a disaster event on the 
interdependent CISs. Therefore, systemic heterogeneity should be 
appropriately considered when modeling failure propagation across 
CISs. In-depth knowledge on systemic heterogeneity and how to incor-
porate the HFs in the modeling process is imperative to ensure the ac-
curacy and reliability of models used in predicting disaster response 
behavior of CISs. Results from this study not only provided a better 

Fig. 7. Sensitivity analysis of the impact assessment results to PGA value.  
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understanding of the three studied HFs, but also demonstrated the ef-
ficacy of the proposed approach in studying other HFs. Lastly, this study 
bears two limitations that are noteworthy. Firstly, a few HFs identified in 
this study could not be properly modeled and assessed due to the 
intrinsic limitations of the selected CISs modeling approach, despite that 
this approach already outperforms other approaches found in the liter-
ature. As emphasized by this study, more advanced models that can be 
used to study a wider range of HFs should be developed. In future works, 
the distributed simulation approach, which has the potential to integrate 
different fine-grained CIS domain models, could be explored as a 
promising solution to overcome the limitations of current models. Sec-
ondly, the accuracy of the impact magnitude of each HF could not be 
fully validated, because only limited HFs were considered in each 
improved model, which means that no real-life benchmark data could be 
found for an apples-to-apples comparison. This issue, however, could be 
partially addressed when the aforementioned more advanced modeling 
approach becomes available, which would account for the impact of HFs 
more accurately and comprehensively and allow for better verification 
of the conclusions reached in this study. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This material is based on work supported by the Beijing Natural 
Science Foundation (BJNSF) under Grant No. 8202027, the National 
Natural Science Foundation of China (NSFC) under Grant No. 
U1709212, and the Tsinghua University-Glodon Joint Research Centre 
for Building Information Model (RCBIM). The authors are grateful for 
the support of BJNSF, NSFC and RCBIM. Any opinions, findings, and 
conclusions or recommendations expressed in this paper are those of the 
authors and do not necessarily reflect the views of the funding agencies. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijdrr.2020.101818. 

References 

[1] J. Chou, C.S. Ongkowijoyo, Hybrid decision-making method for assessing 
interdependency and priority of critical infrastructure, International Journal of 
Disaster Risk Reduction 39 (2019) 101134. 

[2] Q. Mao, N. Li, Assessment of the impact of interdependencies on the resilience of 
networked critical infrastructure systems, Nat. Hazards 93 (2018) 315–337. 

[3] S.A. Rinaldi, J.P. Peerenboom, T.K. Kelly, Identifying, understanding, and 
analyzing critical infrastructure interdependencies, IEEE Contr. Syst. Mag. 21 
(2001) 11–25. 

[4] G.P. Cimellaro, P. Crupi, H.U. Kim, A. Agrawal, Modeling interdependencies of 
critical infrastructures after hurricane Sandy, International Journal of Disaster Risk 
Reduction 38 (2019) 101191. 

[5] C. Zhang, J. Kong, S.P. Simonovic, Modeling joint restoration strategies for 
interdependent infrastructure systems, PloS One 13 (2018), e195727. 

[6] D. Duan, C. Lv, S. Si, Z. Wang, D. Li, J. Gao, S. Havlin, H.E. Stanley, S. Boccaletti, 
Universal behavior of cascading failures in interdependent networks, P. Natl Acad. 
Sci. Usa 116 (2019) 22452–22457. 

[7] S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Catastrophic cascade of 
failures in interdependent networks, Nature 464 (2010) 1025–1028. 

[8] B. Omidvar, M.H. Malekshah, H. Omidvar, Failure risk assessment of 
interdependent infrastructures against earthquake, a Petri net approach: case 
study-power and water distribution networks, Nat. Hazards 71 (2014) 1971–1993. 

[9] G. Pescaroli, M. Nones, L. Galbusera, D. Alexander, {Understanding and mitigating 
cascading crises in the global interconnected system, International Journal of 
Disaster Risk Reduction 30 (2018) 159–163. 

[10] S. De Porcellinis, R. Setola, S. Panzieri, G. Ulivi, Simulation of heterogeneous and 
interdependent critical infrastructures, Int. J. Crit. Infrastruct. 4 (2008) 110–128. 
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